ترغب بنشر مسار تعليمي؟ اضغط هنا

We present the first science results from the Sub-orbital Local Interstellar Cloud Experiment (SLICE): moderate resolution 1020-1070A spectroscopy of four sightlines through the local interstellar medium. High signal-to-noise (S/N) spectra of eta Uma , alpha Vir, delta Sco, and zeta Oph were obtained during a 21 April 2013 rocket flight. The SLICE observations constrain the density, molecular photoexcitation rates, and physical conditions present in the interstellar material towards delta Sco and zeta Oph. Our spectra indicate a factor of two lower total N(H2) than previously reported for delta Sco, which we attribute to higher S/N and better scattered light control in the new SLICE observations. We find N(H2) = 1.5 x 10^{19} cm^{-2} on the delta Sco sightline, with kinetic and excitation temperatures of 67 and 529 K, respectively, and a cloud density of n_{H} = 56 cm^{-3}. Our observations of the bulk of the molecular sightline toward zeta Oph are consistent with previous measurements (N(H2) ~ 3 x 10^{20} cm^{-2} at T_{01} = 66 K and T_{exc} = 350 K). However, we detect significantly more rotationally excited H2 towards zeta Oph than previously observed. We infer a cloud density in the rotationally excited component of n_{H} ~ 7600 cm^{-3} and suggest that the increased column densities of excited H2 are a result of the ongoing interaction between zeta Oph and its environment; also manifest as the prominent mid-IR bowshock observed by WISE and the presence of vibrationally-excited H2 molecules observed by HST.
We present new ultraviolet (UV) observations of the luminous compact blue galaxy KISSR242, obtained with the HST-COS. We identify multiple resolved sub-arcsecond near-UV sources within the COS aperture. The far-UV spectroscopic data show strong outfl ow absorption lines, consistent with feedback processes related to an episode of massive star-formation. OI, CII, and SiII--SiIV are observed with a mean outflow velocity v_{out} = -60 km/s. We also detect faint fine-structure emission lines of singly ionized silicon for the first time in a low-redshift starburst galaxy. These emissions have been seen previously in deep Lyman break galaxy surveys at z ~ 3. The SiII* lines are at the galaxy rest velocity, and they exhibit a quantitatively different line profile from the absorption features. These lines have a width of ~ 75 km/s, too broad for point-like emission sources such as the HII regions surrounding individual star clusters. The size of the SiII* emitting region is estimated to be ~ 250 pc. We discuss the possibility of this emission arising in overlapping super star cluster HII regions, but find this explanation to be unlikely in light of existing far-UV observations of local star-forming galaxies. We suggest that the observed SiII* emission originates in a diffuse warm halo populated by interstellar gas driven out by intense star-formation and/or accreted during a recent interaction that may be fueling the present starburst episode in KISSR242.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا