ترغب بنشر مسار تعليمي؟ اضغط هنا

91 - N. Wakeham 2015
We report the phase diagram of the doping series U_2Pt_xRh_(1-x)C_2, studied through measurements of resistivity, specific heat and magnetic susceptibility. The Neel temperature of U_2RhC_2 of ~ 22 K is suppressed with increasing Pt content, reaching zero temperature close to x=0.7, where we observed signatures of increased quantum fluctuations. In addition, evidence is presented that the antiferromagnetic state undergoes a spin-reorientation transition upon application of an applied magnetic field. This transition shows non-monotonic behaviour as a function of x, peaking at around x=0.3. Superconductivity is observed for x>=0.9, with T_c increasing with increasing x. The reduction in T_c and increase in residual resistivity with decreasing Pt content is inconsistent with the extension of the Abrikosov-Gorkov theory to unconventional superconductivity.
The upper critical fields, $H_{c2}$($T$), of single crystals of the superconductor Ca$_{10}$(Pt$_{4-delta}$As$_{8}$)((Fe$_{0.97}$Pt$_{0.03}$)$_{2}$As$_{2}$)$_{5}$ ($delta$ $approx$ 0.246) are determined over a wide range of temperatures down to $T$ = 1.42 K and magnetic fields of up to $mu_{0}H$ $simeq$ 92 T. The measurements of anisotropic $H_{c2}$($T$) curves are performed in pulsed magnetic fields using radio-frequency contactless penetration depth measurements for magnetic field applied both parallel and perpendicular to the textbf{ab}-plane. Whereas a clear upward curvature in $H_{c2}^{paralleltextbf{c}}$($T$) along textbf{H}$parallel$textbf{c} is observed with decreasing temperature, the $H_{c2}^{paralleltextbf{ab}}$($T$) along textbf{H}$parallel$textbf{ab} shows a flattening at low temperatures. The rapid increase of the $H_{c2}^{paralleltextbf{c}}$($T$) at low temperatures suggests that the superconductivity can be described by two dominating bands. The anisotropy parameter, $gamma_{H}$ $equiv$ $H_{c2}^{paralleltextbf{ab}}/H_{c2}^{paralleltextbf{c}}$, is $sim$7 close to $T_{c}$ and decreases considerably to $sim$1 with decreasing temperature, showing rather weak anisotropy at low temperatures.
111 - Huiwen Ji , J. M. Allred , Ni Ni 2012
We demonstrate that the layered room temperature ferromagnet Fe7Se8 and the topological insulator Bi2Se3 form crystallographically oriented bulk composite intergrowth crystals. The morphology of the intergrowth in real space and reciprocal space is d escribed. Critically, the basal planes of Bi2Se3 and Fe7Se8 are parallel and hence the good cleavage inherent in the bulk phases is retained. The intergrowth is on the micron scale. Both phases in the intergrowth crystals display their intrinsic bulk properties: the ferromagnetism of the Fe7Se8 is anisotropic, with magnetization easy axis in the plane of the crystals, and ARPES characterization shows that the topological surface states remain present on the Bi2Se3. Analogous behavior is found for what has been called Fe-doped Bi2Se3.
80 - Chang Liu , Takeshi Kondo , Ni Ni 2009
We use angle-resolved photoemission spectroscopy (ARPES) to study the electronic properties of CaFe2As2 - parent compound of a pnictide superconductor. We find that the structural and magnetic transition is accompanied by a three- to two-dimensional (3D-2D) crossover in the electronic structure. Above the transition temperature (Ts) Fermi surfaces around Gamma and X points are cylindrical and quasi-2D. Below Ts the former becomes a 3D ellipsoid, while the latter remains quasi-2D. This finding strongly suggests that low dimensionality plays an important role in understanding the superconducting mechanism in pnictides.
We studied the effect of hydrostatic pressure (P) on the structural phase transitions and superconductivity in the ternary and pseudo-ternary iron arsenides CaFe2As2, BaFe2As2, and (Ba0.55K0.45)Fe2As2, by means of measurements of electrical resistivi ty (rho) in the 1.8 - 300 K temperature (T) range, pressures up to 20 kbar, and magnetic fields up to 9 T. CaFe2As2 and BaFe2As2 (lightly doped with Sn) display structural phase transitions near 170 K and 85 K, respectively, and do not exhibit superconductivity in ambient pressure, while K-doped (Ba0.55K0.45)Fe2As2 is superconducting for T < 30 K. The effect of pressure on BaFe2As2 is to shift the onset of the crystallographic transformation down in temperature at the rate of about -1.04 K/kbar, while shifting the whole rho(T) curves downward, whereas its effect on superconducting (Ba0.55K0.45)Fe2As2 is to shift the onset of superconductivity to lower temperatures at the rate of about -0.21 K/kbar. The effect of pressure on CaFe2As2 is first to suppress the crystallographic transformation and induce superconductivity with onset near 12 K very rapidly, i.e., for P < 5 kbar. However, higher pressures bring about another phase transformation characterized by reduced resistivity, and the suppression of superconductivity, confining superconductivity to a narrow pressure dome centered near 5 kbar. Upper critical field (Hc2) data in (Ba0.55K0.45)Fe2As2 and CaFe2As2 are discussed.
Magnetization, resistivity and specific heat measurements were performed on the solution-grown, single crystals of six GdT$_2$Zn$_{20}$ (T = Fe, Ru, Os, Co, Rh and Ir) compounds, as well as their Y analogues. For the Gd compounds, the Fe column membe rs manifest a ferromagnetic (FM) ground state (with an enhanced Curie temperature, $T_{mathrm{C}}$, for T = Fe and Ru), whereas the Co column members manifest an antiferromagnetic (AFM) ground state. Thermodynamic measurements on the YT$_2$Zn$_{20}$ revealed that the enhanced $T_{mathrm{C}}$ for GdFe$_2$Zn$_{20}$ and GdRu$_2$Zn$_{20}$ can be understood within the framework of Heisenberg moments embedded in a nearly ferromagnetic Fermi liquid. Furthermore, electronic structure calculations indicate that this significant enhancement is due to large, close to the Stoner FM criterion, transition metal partial density of states at Fermi level, whereas the change of FM to AFM ordering is associated with filling of electronic states with two additional electrons per formula unit. The degree of this sensitivity is addressed by the studies of the pseudo-ternary compounds Gd(Fe$_x$Co$_{1-x}$)$_2$Zn$_{20}$ and Y(Fe$_x$Co$_{1-x}$)$_2$Zn$_{20}$ which clearly reveal the effect of 3d band filling on their magnetic properties.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا