ترغب بنشر مسار تعليمي؟ اضغط هنا

We report on the discovery of the most distant Milky Way (MW) stars known to date: ULAS J001535.72$+$015549.6 and ULAS J074417.48$+$253233.0. These stars were selected as M giant candidates based on their infrared and optical colors and lack of prope r motions. We spectroscopically confirmed them as outer halo giants using the MMT/Red Channel spectrograph. Both stars have large estimated distances, with ULAS J001535.72$+$015549.6 at $274 pm 74$ kpc and ULAS J074417.48$+$253233.0 at 238 $pm$ 64 kpc, making them the first MW stars discovered beyond 200 kpc. ULAS J001535.72$+$015549.6 and ULAS J074417.48$+$253233.0 are both moving away from the Galactic center at $52 pm 10$ km s$^{-1}$ and $24 pm 10$ km s$^{-1}$, respectively. Using their distances and kinematics, we considered possible origins such as: tidal stripping from a dwarf galaxy, ejection from the MWs disk, or membership in an undetected dwarf galaxy. These M giants, along with two inner halo giants that were also confirmed during this campaign, are the first to map largely unexplored regions of our Galaxys outer halo.
We present absorption line indices measured in the integrated spectra of globular clusters both from the Galaxy and from M 31. Our samples include 41 Galactic globular clusters, and more than 300 clusters in M 31. The conversion of instrumental equiv alent widths into the Lick system is described, and zero-point uncertainties are provided. Comparison of line indices of old M 31 clusters and Galactic globular clusters suggests an absence of important differences in chemical composition between the two cluster systems. In particular, CN indices in the spectra of M 31 and Galactic clusters are essentially consistent with each other, in disagreement with several previous works. We reanalyze some of the previous data, and conclude that reported CN differences between M 31 and Galactic clusters were mostly due to data calibration uncertainties. Our data support the conclusion that the chemical compositions of Milky Way and M 31 globular clusters are not substantially different, and that there is no need to resort to enhanced nitrogen abundances to account for the optical spectra of M 31 globular clusters.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا