ترغب بنشر مسار تعليمي؟ اضغط هنا

Recent work shows that strong stability and dimensionality freedom are essential for robust numerical integration of thermostatted ring-polymer molecular dynamics (T-RPMD) and path-integral molecular dynamics (PIMD), without which standard integrator s exhibit non-ergodicity and other pathologies [J. Chem. Phys. 151, 124103 (2019); J. Chem. Phys. 152, 104102 (2020)]. In particular, the BCOCB scheme, obtained via Cayley modification of the standard BAOAB scheme, features a simple reparametrization of the free ring-polymer sub-step that confers strong stability and dimensionality freedom and has been shown to yield excellent numerical accuracy in condensed-phase systems with large time-steps. Here, we introduce a broader class of T-RPMD numerical integrators that exhibit strong stability and dimensionality freedom, irrespective of the Ornstein-Uhlenbeck friction schedule. In addition to considering equilibrium accuracy and time-step stability as in previous work, we evaluate the integrators on the basis of their rates of convergence to equilibrium and their efficiency at evaluating equilibrium expectation values. Within the generalized class, we find BCOCB to be superior with respect to accuracy and efficiency for various configuration-dependent observables, although other integrators within the generalized class perform better for velocity-dependent quantities. Extensive numerical evidence indicates that the stated performance guarantees hold for the strongly anharmonic case of liquid water. Both analytical and numerical results indicate that BCOCB excels over other known integrators in terms of accuracy, efficiency, and stability with respect to time-step for practical applications.
Sticky Brownian motion is the simplest example of a diffusion process that can spend finite time both in the interior of a domain and on its boundary. It arises in various applications such as in biology, materials science, and finance. This article spotlights the unusual behavior of sticky Brownian motions from the perspective of applied mathematics, and provides tools to efficiently simulate them. We show that a sticky Brownian motion arises naturally for a particle diffusing on $mathbb{R}_+$ with a strong, short-ranged potential energy near the origin. This is a limit that accurately models mesoscale particles, those with diameters $approx 100$nm-$10mu$m, which form the building blocks for many common materials. We introduce a simple and intuitive sticky random walk to simulate sticky Brownian motion, that also gives insight into its unusual properties. In parameter regimes of practical interest, we show this sticky random walk is two to five orders of magnitude faster than alternative methods to simulate a sticky Brownian motion. We outline possible steps to extend this method towards simulating multi-dimensional sticky diffusions.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا