ترغب بنشر مسار تعليمي؟ اضغط هنا

The capacity of noisy quantum channels characterizes the highest rate at which information can be reliably transmitted and it is therefore of practical as well as fundamental importance. Capacities of classical channels are computed using alternating optimization schemes, called Blahut-Arimoto algorithms. In this work, we generalize classical Blahut-Arimoto algorithms to the quantum setting. In particular, we give efficient iterative schemes to compute the capacity of channels with classical input and quantum output, the quantum capacity of less noisy channels, the thermodynamic capacity of quantum channels, as well as the entanglement-assisted capacity of quantum channels. We give rigorous a priori and a posteriori bounds on the estimation error by employing quantum entropy inequalities and demonstrate fast convergence of our algorithms in numerical experiments.
A linear unsaturating magnetoresistance at high perpendicular magnetic fields, together with a quadratic positive magnetoresistance at low fields, has been seen in many different experimental materials, ranging from silver chalcogenides and thin film s of InSb to topological materials like graphene and Dirac semimetals. In the literature, two very different theoretical approaches have been used to explain this classical magnetoresistance as a consequence of sample disorder. The phenomenological Random Resistor Network model constructs a grid of four-terminal resistors, each with a varying random resistance. The Effective Medium Theory model imagines a smoothly varying disorder potential that causes a continuous variation of the local conductivity. Here, we demonstrate numerically that both models belong to the same universality class and that a restricted class of the Random Resistor Network is actually equivalent to the Effective Medium Theory. Both models are also in good agreement with experiments on a diverse range of materials. Moreover, we show that in both cases, a single parameter, i.e. the ratio of the fluctuations in the carrier density to the average carrier density, completely determines the magnetoresistance profile.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا