ترغب بنشر مسار تعليمي؟ اضغط هنا

In this paper, the master equation for the coupled lossy waveguides is solved using the thermofield dynamics(TFD) formalism. This formalism allows the use of the underlying symmetry algebras SU(2) and SU(1,1), associated with the Hamiltonian of the c oupled lossy waveguides,to compute entanglement and decoherence as a function of time for various input states such as NOON states and thermal states.
This work is dedicated to the study of radiation reaction signatures in the framework of classical and quantum electrodynamics. Since there has been no distinct experimental validation of radiation reaction and its underlying equations so far and its impact is expected to be substantial for the construction of new experimental devices, e.g., quantum x-free electron lasers, a profound understanding of radiation reaction effects is of special interest. Here, we describe how the inclusion of quantum radiation reaction effects changes the dynamics of ultra-relativistic electron beams colliding with intense laser pulses significantly. Thereafter, the angular distribution of emitted radiation is demonstrated to be strongly altered in the quantum framework, if in addition to single photon emission also higher order photon emissions are considered. Furthermore, stimulated Raman scattering of an ultra-intense laser pulse in plasmas is examined and forward Raman scattering is found to be significantly increased by the inclusion of radiation reaction effects in the classical regime. The numerical simulations in this work show the feasibility of an experimental verification of the predicted effects with presently available lasers and electron accelerators.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا