ترغب بنشر مسار تعليمي؟ اضغط هنا

Superconducting ($S$) thin film superlattices composed of Nb and a normal metal spacer ($N$) have been extensively utilized in Josephson junctions given their favorable surface roughness compared to Nb films of comparable thickness. In this work, we characterize the London penetration depth and Ginzburg-Landau coherence lengths of $S/N$ superlattices using polarized neutron reflectometry and electrical transport. Despite the normal metal spacer layers being only approximately 8% of the total superlattice thickness, we surprisingly find that the introduction of these thin $N$ spacers between $S$ layers leads to a dramatic increase in the measured London penetration depth compared to that of a single Nb film of comparable thickness. Using the measured values for the effective in- and out-of-plane coherence lengths, we quantify the induced anisotropy of the superlattice samples and compare to a single Nb film sample. From these results, we find that that the superlattices behave similarly to layered 2D superconductors.
Unconventional superconductivity has been suggested to be present at the interface between bismuth and nickel in thin-film bilayers. In this work, we study the structural, magnetic and superconducting properties of sputter deposited Bi/Ni bilayers. A s-grown, our films do not display a superconducting transition, however, when stored at room temperature, after about 14 days our bilayers develop a superconducting transition up to 3.8 K. To systematically study the effect of low temperature annealing on our bilayers, we perform structural characterization with X-ray diffraction and polarized neutron reflectometry, along with magnetometry and low temperature electrical transport measurements on samples annealed at $70,^circ$C. We show that the onset of superconductivity in our samples is coincident with the formation of ordered NiBi$_3$ intermetallic alloy, a known $s$-wave superconductor. We calculate that the annealing process has an activation energy of $(0.86pm 0.06)$eV. As a consequence, gentle heating of the bilayers will cause formation of the superconducting NiBi$_3$ at the Ni/Bi interface, which poses a challenge to studying any distinct properties of Bi/Ni bilayers without degrading that interface.
It has been suggested by theoretical works that equal spin-triplet Cooper pairs can be generated in Josephson junctions containing both a ferromagnet and a source of spin-orbit coupling. Our recent experimental work suggested that spin-triplet Cooper pairs were not generated by a Pt spin-orbit coupling layer when the ferromagnetic weak link had entirely in-plane anisotropy (N. Satchell and N.O. Birge, Phys. Rev. B 97, 214509 (2018)). Here, we revisit the experiment using Pt again as a source for spin-orbit coupling and a [Co(0.4 nm)/Ni(0.4 nm)]$_{times8}$/Co(0.4 nm) ferromagnetic weak link with both in-plane and out-of-plane magnetization components (canted magnetization). The canted magnetization more closely matches theoretical predictions than our previous experimental work. Our results suggest that there is no supercurrent contribution in our junctions from equal spin-triplets. In addition, this work includes the first systematic study of supercurrent dependence on Cu interlayer thickness, a common additional layer used to buffer the growth of the ferromagnet and which for Co may significantly improve the growth morphology. We report that the supercurrent in the [Co(0.4 nm)/Ni(0.4 nm)]$_{times8}$/Co(0.4 nm) ferromagnetic weak links can be enhanced by over two orders of magnitude by tuning the Cu interlayer thickness. This result has important application in superconducting spintronics, where large critical currents are desirable for devices.
The lengthscale over which supercurrent from conventional BCS, $s$-wave, superconductors ($S$) can penetrate an adjacent ferromagnetic ($F$) layer depends on the ability to convert singlet Cooper pairs into triplet Cooper pairs. Spin aligned triplet Cooper pairs are not dephased by the ferromagnetic exchange interaction, and can thus penetrate an $F$ layer over much longer distances than singlet Cooper pairs. These triplet Cooper pairs carry a dissipationless spin current and are the fundamental building block for the fledgling field of superspintronics. Singlet-triplet conversion by inhomogeneous magnetism is well established. Here, we describe an attempt to use spin orbit coupling as a new mechanism to mediate singlet-triplet conversion in $S-F-S$ Josephson junctions. We report that the addition of thin Pt spin-orbit coupling layers in our Josephson junctions significantly increases supercurrent transmission, however the decay length of the supercurrent is not found to increase. We attribute the increased supercurrent transmission to Pt acting as a buffer layer to improve the growth of the Co $F$ layer.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا