ترغب بنشر مسار تعليمي؟ اضغط هنا

Powder X-ray diffraction (PXRD) and single-crystal neutron scattering were used to study in detail the structural properties of the Cs2CuCl(4-x)Br(x) series, good realizations of layered triangular antiferromagnets. Detailed temperature-dependent PXR D reveal a pronounced anisotropy of the thermal expansion for the three different crystal directions of the orthorhombic structure without any structural phase transition down to 20 K. Remarkably, the anisotropy of the thermal expansion varies for different $x$, leading to distinct changes of the geometry of the local Cu environment as a function of temperature and composition. The refinement of the atomic positions confirms that for x=1 and 2, the Br atoms occupy distinct halogen sites in the [CuX4]-tetrahedra (X = Cl, Br). The precise structure data are used to calculate the magnetic exchange couplings using density functional methods for x=0. We observe a pronounced temperature dependence of the calculated magnetic exchange couplings, reflected in the strong sensitivity of the magnetic exchange couplings on structural details. These calculations are in good agreement with the experimentally established values for Cs2CuCl4 if one takes the low-temperature structure data as a starting point.
Depending on the crystal growth conditions, an orthorhombic (O-type) or a tetragonal (T-type) structure can be found in the solid solution Cs2CuCl4-xBrx (0 < x < 4). Here we present measurements of the temperature-dependent magnetic susceptibility an d isothermal magnetization on the T-type compounds x = 1.6 and 1.8 and compare these results with the magnetic properties recently derived for the O-type variant by Cong et al., Phys. Rev. B 83, 064425 (2011). The systems were found to exhibit quite dissimilar magnetic properties which can be assigned to differences in the Cu coordination in these two structural variants. Whereas the tetragonal compounds can be classified as quasi-2D ferromagnets, characterized by ferromagnetic layers with a weak antiferromagnetic inter-layer coupling, the orthorhombic materials, notably the border compounds x = 0 and 4, are model systems for frustrated 2D Heisenberg antiferromagnets
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا