ترغب بنشر مسار تعليمي؟ اضغط هنا

We prove $L_{infty}$-formality for the higher cyclic Hochschild complex $chH$ over free associative algebra or path algebra of a quiver. The $chH$ complex is introduced as an appropriate tool for the definition of pre-Calabi-Yau structure. We show th at cohomologies of this complex are pure in case of free algebras (path algebras), concentrated in degree zero. It serves as a main ingredient for the formality proof. For any smooth algebra we choose a small qiso subcomplex in the higher cyclic Hochschild complex, which gives rise to a calculus of highly noncommutative monomials, we call them $xidelta$-monomials. The Lie structure on this subcomplex is combinatorially described in terms of $xidelta$-monomials. This subcomplex and a basis of $xidelta$-monomials in combination with arguments from Groebner bases theory serves for the cohomology calculations of the higher cyclic Hochschild complex. The language of $xidelta$-monomials in particular allows an interpretation of pre-Calabi-Yau structure as a noncommutative Poisson structure.
180 - Natalia Iyudu 2020
We develop tools for classification of contraction algebras and apply these to solve the problem on classification up to isomorphism of 8 and 9 dimensional algebras corresponding to 3-fold flops. We prove that there is only one up to isomorphism cont raction algebra of dimension 8, and two algebras of dimension 9. The formulae for the dimension of algebra, depending on the type of the potential are obtained. In the second part of the paper we show that associated graded structure to brace and truss with appropriate descending ideal filtration is pre-Lie.
We give an explicit formula showing how the double Poisson algebra introduced in cite{VdB} appears as a particular part of a pre-Calabi-Yau structure, i.e. cyclically invariant, with respect to the natural inner form, solution of the Maurer-Cartan eq uation on $Aoplus A^*$. Specific part of this solution is described, which is in one-to-one correspondence with the double Poisson algebra structures. The result holds for any associative algebra $A$ and emphasizes the special role of the fourth component of a pre-Calabi-Yau structure in this respect. As a consequence we have that appropriate pre-Calabi-Yau structures induce a Poisson brackets on representation spaces $({rm Rep}_n A)^{Gl_n}$ for any associative algebra $A$.
We give a complete classification of quadratic algebras A, with Hilbert series $H_A=(1-t)^{-3}$, which is the Hilbert series of commutative polynomials on 3 variables. Koszul algebras as well as algebras with quadratic Grobner basis among them are id entified. We also give a complete classification of cubic algebras A with Hilbert series $H_A=(1+t)^{-1}(1-t)^{-3}$. These two classes of algebras contain all Artin-Schelter regular algebras of global dimension 3. As far as the latter are concerned, our results extend well-known results of Artin and Schelter by providing a classification up to an algebra isomorphism.
We give a complete description of quadratic potential and twisted potential algebras on 3 generators as well as cubic potential and twisted potential algebras on 2 generators up to graded algebra isomorphisms under the assumption that the ground fiel d is algebraically closed and has characteristic different from 2 or 3. We also prove that for two generated potential algebra necessary condition of finite-dimensionality is that potential contains terms of degree three, this answers a question of Agata Smoktunowicz and the first named author, formulated in [AN]. We clarify situation in case of arbitrary number of generators as well.
Potential algebras feature in the minimal model program and noncommutative resolution of singularities, and the important cases are when they are finite dimensional, or of linear growth. We develop techniques, involving Grobner basis theory and gener alized Golod-Shafarevich type theorems for potential algebras, to determine finiteness conditions in terms of the potential. We consider two-generated potential algebras. Using Grobner bases techniques and arguing in terms of associated truncated algebra we prove that they cannot have dimension smaller than $8$. This answers a question of Wemyss cite{Wemyss}, related to the geometric argument of Toda cite{T}. We derive from the improved version of the Golod-Shafarevich theorem, that if the potential has only terms of degree 5 or higher, then the potential algebra is infinite dimensional. We prove, that potential algebra for any homogeneous potential of degree $ngeq 3$ is infinite dimensional. The proof includes a complete classification of all potentials of degree 3. Then we introduce a certain version of Koszul complex, and prove that in the class ${cal P}_n$ of potential algebras with homogeneous potential of degree $n+1geq 4$, the minimal Hilbert series is $H_n=frac{1}{1-2t+2t^n-t^{n+1}}$, so they are all infinite dimensional. Moreover, growth could be polynomial (but non-linear) for the potential of degree 4, and is always exponential for potential of degree starting from 5. For one particular type of potential we prove a conjecture by Wemyss, which relates the difference of dimensions of potential algebra and its abelianization with Gopakumar-Vafa invariants.
We present an example of a quadratic algebra given by three generators and three relations, which is automaton (the set of normal words forms a regular language) and such that its ideal of relations does not possess a finite Grobner basis with respec t to any choice of generators and any choice of a well-ordering of monomials compatible with multiplication. This answers a question of Ufnarovski. Another result is a simple example (4 generators and 7 relations) of a quadratic algebra of intermediate growth.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا