ترغب بنشر مسار تعليمي؟ اضغط هنا

The protostellar jet driven by L1448C was observed in the SiO J=8-7 and CO J=3-2 lines and 350 GHz dust continuum at ~1 resolution with the Submillimeter Array (SMA). A narrow jet from the northern source L1448C(N) was observed in the SiO and the hig h-velocity CO. The jet consists of a chain of emission knots with an inter-knot spacing of ~2 (500 AU) and a semi-periodic velocity variation. The innermost pair of knots, which are significant in the SiO map but barely seen in the CO, are located at ~1 (250 AU) from the central source, L1448C(N). Since the dynamical time scale for the innermost pair is only ~10 yr, SiO may have been formed in the protostellar wind through the gas-phase reaction, or been formed on the dust grain and directly released into the gas phase by means of shocks. It is found that the jet is extremely active with a mechanical luminosity of ~7 L_sun, which is comparable to the bolometric luminosity of the central source (7.5 L_sun). The mass accretion rate onto the protostar derived from the mass-loss rate is ~10^{-5} M_sun/yr. Such a high mass accretion rate suggests that the mass and the age of the central star are 0.03-0.09 M_sun and (4-12)x10^3 yr, respectively, implying that the central star is in the very early stage of protostellar evolution. The low-velocity CO emission delineates two V-shaped shells with a common apex at L1448C(N). The kinematics of these shells are reproduced by the model of a wide opening angle wind. The co-existence of the highly-collimated jets and the wide-opening angle shells can be explained by the unified X-wind model in which highly-collimated jet components correspond to the on-axis density enhancement of the wide-opening angle wind. The CO $J$=3--2 map also revealed the second outflow driven by the southern source L1448C(S) located at ~8.3 (2000 AU) from L1448C(N).
HH 211 is a highly collimated jet originating from a nearby young Class 0 protostar. Here is a follow-up study of the jet with our previous observations at unprecedented resolution up to ~ 0.3 in SiO (J=8-7), CO (J=3-2), and SO (N_J=8_9-7_8). SiO, CO , and SO can all be a good tracer of the HH 211 jet, tracing the internal shocks in the jet. Although the emissions of these molecules show roughly the same morphology of the jet, there are detailed differences. In particular, the CO emission traces the jet closer to the source than the SiO and SO emissions. In addition, in the better resolved internal shocks, both the CO and SO emission are seen slightly ahead of the SiO emission. The jet is clearly seen on both sides of the source with more than one cycle of wiggle. The wiggle is reflection-symmetric about the source and can be reasonably fitted by an orbiting source jet model. The best-fit parameters suggest that the source itself could be a very low-mass protobinary with a total mass of ~ 60 M_Jup and a binary separation of ~ 4.6 AU. The abundances of SiO and SO in the gas phase are found to be highly enhanced in the jet as compared to the quiescent molecular clouds, even close to within 300 AU from the source where the dynamical time scale is <10 yrs. The abundance enhancements of these molecules are closely related to the internal shocks. The detected SiO is either the consequence of the release of Si-bearing material from dust grains or of its formation via gas chemistry in the shocks. The SO, on the other hand, seems to form via gas chemistry in the shocks.
HH 211 is a nearby young protostellar system with a highly collimated jet. We have mapped it in 352 GHz continuum, SiO (J=8-7), and HCO+ (J=4-3) emission at up to ~ 0.2 resolution with the Submillimeter Array (SMA). The continuum source is now resolv ed into two sources, SMM1 and SMM2, with a separation of ~ 84 AU. SMM1 is seen at the center of the jet, probably tracing a (inner) dusty disk around the protostar driving the jet. SMM2 is seen to the southwest of SMM1 and may trace an envelope-disk around a small binary companion. A flattened envelope-disk is seen in HCO+ around SMM1 with a radius of ~ 80 AU perpendicular to the jet axis. Its velocity structure is consistent with a rotation motion and can be fitted with a Keplerian law that yields a mass of ~ 50+-15 Jupiter mass (a mass of a brown dwarf) for the protostar. Thus, the protostar could be the lowest mass source known to have a collimated jet and a rotating flattened envelope-disk. A small-scale (~ 200 AU) low-speed (~ 2 km/s) outflow is seen in HCOP+ around the jet axis extending from the envelope-disk. It seems to rotate in the same direction as the envelope-disk and may carry away part of the angular momentum from the envelope-disk. The jet is seen in SiO close to ~ 100 AU from SMM1. It is seen with a C-shaped bending. It has a transverse width of <~ 40 AU and a velocity of ~ 170+-60 km/s. A possible velocity gradient is seen consistently across its innermost pair of knots, with ~ 0.5 km/s at ~ 10 AU, consistent with the sense of rotation of the envelope-disk. If this gradient is an upper limit of the true rotational gradient of the jet, then the jet carries away a very small amount of angular momentum of ~ 5 AU km/s and thus must be launched from the very inner edge of the disk near the corotation radius.
134 - Sherry C. C. Yeh 2007
We have mapped the proto-binary source IRAS 16293-2422 in CO 2-1, 13CO 2-1, and CO 3-2 with the Submillimeter Array (SMA). The maps with resolution of 1.5-5 reveal a single small scale (~3000 AU) bipolar molecular outflow along the east-west directio n. We found that the blueshifted emission of this small scale outflow mainly extends to the east and the redshifted emission to the west from the position of IRAS 16293A. A comparison with the morphology of the large scale outflows previously observed by single-dish telescopes at millimeter wavelengths suggests that the small scale outflow may be the inner part of the large scale (~15000 AU) E-W outflow. On the other hand, there is no clear counterpart of the large scale NE-SW outflow in our SMA maps. Comparing analytical models to the data suggests that the morphology and kinematics of the small scale outflow can be explained by a wide-angle wind with an inclination angle of ~30-40 degrees with respect to the plane of the sky. The high resolution CO maps show that there are two compact, bright spots in the blueshifted velocity range. An LVG analysis shows that the one located 1 to the east of source A is extremely dense, n(H_2)~10^7 cm^-3, and warm, T_kin >55 K. The other one located 1 southeast of source B has a higher temperature of T_kin >65 K but slightly lower density of n(H_2)~10^6 cm^-3. It is likely that these bright spots are associated with the hot core-like emission observed toward IRAS 16293. Since both two bright spots are blueshifted from the systemic velocity and are offset from the protostellar positions, they are likely formed by shocks.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا