ترغب بنشر مسار تعليمي؟ اضغط هنا

Understanding the role of entanglement and its dynamics in composite quantum systems lies at the forefront of quantum matter studies. Here we investigate competing entanglement dynamics in an open Ising-spin chain that allows for exchange with an ext ernal central qudit probe. We propose a new metric dubbed the multipartite entanglement loss (MEL) that provides an upper bound on the amount of information entropy shared between the spins and the qudit probe that serves to unify physical spin-fluctuations, Quantum Fisher Information (QFI), and bipartite entanglement entropy.
We investigate the effect of thermal fluctuations on the two-particle spectral function for a disordered $s$-wave superconductor in two dimensions, focusing on the evolution of the collective amplitude and phase modes. We find three main effects of t hermal fluctuations: (a) the phase mode is softened with increasing temperature reflecting the decrease of superfluid stiffness; (b) remarkably, the non-dispersive collective amplitude modes at finite energy near ${bf q}=[0,0]$ and ${bf q}=[pi,pi]$ survive even in presence of thermal fluctuations in the disordered superconductor; and (c) the scattering of the thermally excited fermionic quasiparticles leads to low energy incoherent spectral weight that forms a strongly momentum-dependent background halo around the phase and amplitude collective modes and broadens them. Due to momentum and energy conservation constraints, this halo has a boundary which disperses linearly at low momenta and shows a strong dip near the $[pi,pi]$ point in the Brillouin zone.
We expand the concept of frustration in Mott insulators and quantum spin liquids to metals with flat bands. We show that when inter-orbital hopping $t_2$ dominates over intra-orbital hopping $t_1$, in a multiband system with strong spin-orbit couplin g $lambda$, electronic states with a narrow bandwidth $Wsim t_2^2/lambda$ are formed compared to a bandwidth of order $t_1$ for intra-orbital hopping. We demonstrate the evolution of the electronic structure, Berry phase distributions for time-reversal and inversion breaking cases, and their imprint on the optical absorption, in a tight binding model of $d$-orbital hopping on a honeycomb lattice. Going beyond quantum Hall effect and twisted bilayer graphene, we provide an alternative mechanism and a richer materials platform for achieving flat bands poised at the brink of instabilities toward novel correlated and fractionalized metallic phases.
We show that while orbital magnetic field and disorder, acting individually weaken superconductivity, acting together they produce an intriguing evolution of a two-dimensional type-II s-wave superconductor. For weak disorder, the critical field H_c a t which the superfluid density collapses is coincident with the field at which the superconducting energy gap gets suppressed. However, with increasing disorder these two fields diverge from each other creating a pseudogap region. The nature of vortices also transform from Abrikosov vortices with a metallic core for weak disorder to Josephson vortices with gapped and insulating cores for higher disorder. Our results naturally explain two outstanding puzzles: (1) the gigantic magnetoresistance peak observed as a function of magnetic field in thin disordered superconducting films; and (2) the disappearance of the celebrated zero-bias Caroli-de Gennes-Matricon peak in disordered superconductors.
We obtain the most general forms of rank-2 and rank-3 tensors allowed by the crystal symmetries of the honeycomb lattice of edge-sharing octahedra for crystals belonging to different crystallographic point groups, including the monoclinic point group $2/m$ and the trigonal (or rhombohedral) point group $bar{3}$. Our results are relevant for two-dimensional materials, such as $alpha$-RuCl$_3$, CrI$_3$, and the honeycomb iridates. We focus on the magnetic-field-dependent thermal conductivity tensor $kappa_{ij}(mathbf{H})$, which describes a systems longitudinal and thermal Hall responses, for the cases when the magnetic field is applied along high-symmetry directions, perpendicular to the plane and in the plane. We highlight some unexpected results, such as the equality of fully-longitudinal components to partially-transverse components in rank-3 tensors for systems with three-fold rotational symmetry, and make testable predictions for the thermal conductivity tensor.
We investigate spin chains with bilinear-biquadratic spin interactions as a function of an applied magnetic field $h$. At the Uimin-Lai-Sutherland (ULS) critical point we find a remarkable hierarchy of fractionalized excitations revealed by the dynam ical structure factor $S(q,omega)$ as a function of magnetic field yielding a transition from a gapless phase to another gapless phase before reaching the fully polarized state. At $h=0$, the envelope of the lowest energy excitations goes soft at two points $q_1=2pi/3$ and $q_2=4pi/3$, dubbed the A-phase. With increasing field, the spectral peaks at each of the gapless points bifurcate and combine to form a new set of fractionalized excitations that soften at a single point $q=pi$ at $h_{c1}approx 0.94$. Beyond $h_{c1}$ the system remains in this phase dubbed the B-phase until the transition at $h_{c2}=4$ to the fully polarized phase. We discuss the central charge of these two gapless phases and contrast the behavior with that of the gapped Haldane phase in a field.
In a minimal 2-band model with attractive interactions between fermions, we calculate the gap to single and two-particle excitations, the band-dependent spectral functions, the superfluid density and compressibility using quantum Monte Carlo (QMC) me thods. We find Fermi and Bose insulating phases with signatures of incipient pairing evident in the single-particle spectral functions, and a superconducting state with three different spectral functions: (i) both bands show BCS behavior in which the minimum gap locus occurs on a closed contour on the underlying Fermi surface; (ii) both bands show BEC behavior in which the minimum gap occurs at a point; and (iii) band selective spectral characteristics, in which one band shows BCS while the other shows BEC behavior. At large interactions, we find a Mott phase of rung bosons in which the filling is one boson for every two sites, half the typical density constraint for Mott insulators.
One of the fundamental questions about the high temperature cuprate superconductors is the size of the Fermi surface (FS) underlying the superconducting state. By analyzing the single particle spectral function for the Fermi Hubbard model as a functi on of repulsion $U$ and chemical potential $mu$, we find that the Fermi surface in the normal state reconstructs from a large Fermi surface matching the Luttinger volume as expected in a Fermi liquid, to a Fermi surface that encloses fewer electrons that we dub the Luttinger Breaking (LB) phase, as the Mott insulator is approached. This transition into a non-Fermi liquid phase that violates the Luttinger count, is a continuous phase transition at a critical density in the absence of any other broken symmetry. We obtain the Fermi surface contour from the spectral weight $A_{vec{k}}(omega=0)$ and from an analysis of the poles and zeros of the retarded Greens function $G_{vec{k}}^{ret}(E=0)$, calculated using determinantal quantum Monte Carlo and analytic continuation methods.We discuss our numerical results in connection with experiments on Hall measurements, scanning tunneling spectroscopy and angle resolved photoemission spectroscopy.
It is now well established that the Kitaev honeycomb model in a magnetic field along the $[111]$-direction harbors an intermediate gapless quantum spin liquid (QSL) phase sandwiched between a gapped non-abelian QSL at low fields $H< H_{c1}$ and a par tially polarized phase at high fields $H> H_{c2}$. Here, we analyze the low field and high field phases and phase transitions in terms of single- and two-magnon excitations using exact diagonalization (ED) and density matrix renormalization group (DMRG) methods. We find that the energy to create a bound state of two-magnons $Delta_p$ becomes lower than the energy to create a single spin flip $Delta_s$ near $H_{c2}$. In the entire Kitaev spin liquid $Delta_p<Delta_s$ and both gaps vanish at $H_{c2}$. We make testable predictions for magnon pairing that could be observable in Raman scattering measurements on Kitaev QSL candidate materials.
Weyl semimetals host linear energy dispersions around Weyl nodes, as well as monopoles of Berry curvature in momentum space around these points. These features give rise to unique transport signatures in a Weyl semimetal, such as transverse transport without an applied magnetic field, known as anomalous transport. The type-II Weyl semimetal, recently experimentally demonstrated in several materials, is classified by a tilting of the Weyl nodes. This paper provides a theoretical study on thermoelectric transport in time-reversal breaking type-II Weyl semimetals. Our results examine the balance between anomalous and non-anomalous contributions to the Nernst effect when subject to an external magnetic field. We also show how increasing scattering times have on enhancing effect on thermoelectric transport in these materials. Since a temperature-dependent chemical potential has been theoretically shown to be paramount when considering anomalous transport, we also study how similar considerations impact the Nernst thermopower in the non-anomalous case.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا