ترغب بنشر مسار تعليمي؟ اضغط هنا

Gravitational waves from compact binary coalescences provide a unique laboratory to test properties of compact objects. As alternatives to the ordinary black holes in general relativity, various exotic compact objects have been proposed. Some of them have largely different values of the tidal deformability and spin-induced quadrupole moment from those of black holes, and their binaries could be distinguished from binary black hole by using gravitational waves emitted during their inspiral regime, excluding the highly model-dependent merger and ring-down regimes. We reanalyze gravitational waves from low-mass merger events in the GWTC-2, detected by the Advanced LIGO and Advanced Virgo. Focusing on the influence of tidal deformability and spin-induced quadrupole moment in the inspiral waveform, we provide model-independent constraints on deviations from the standard binary black hole case. We find that all events that we have analyzed are consistent with the waveform of binary black hole in general relativity. Bayesian model selection shows that the hypothesis that the binary is composed of exotic compact objects is disfavored by all events.
To date, close to fifty presumed black hole binary mergers were observed by the LIGO and Virgo detectors. The analyses have been done with an assumption that these objects are black holes by limiting the spin prior to the Kerr bound. However, the abo ve assumption is not valid for superspinars, which have the Kerr geometry but rotate beyond the Kerr bound. In this study, we investigate whether and how the limited spin prior range causes a bias in parameter estimation for superspinars if they are detected. To this end, we estimate binary parameters of the simulated inspiral signals of the gravitational waves of compact binaries by assuming that at least one component of them is a superspinar. We have found that when the primary is a superspinar, both mass and spin parameters are biased in parameter estimation due to the limited spin prior range. In this case, the extended prior range is strongly favored compared to the limited one. On the other hand, when the primary is a black hole, we do not see much bias in parameter estimation due to the limited spin prior range, even though the secondary is a superspinar. We also apply the analysis to black hole binary merger events GW170608 and GW190814, which have a long and loud inspiral signal. We do not see any preference of superspinars from the model selection for both events. We conclude that the extension of the spin prior range is necessary for accurate parameter estimation if highly spinning primary objects are found, while it is difficult to identify superspinars if they are only the secondary objects. Nevertheless, the bias in parameter estimation of spin for the limited spin prior range can be a clue of the existence of superspinars.
We reanalyze gravitational waves from binary-neutron-star mergers GW170817 and GW190425 using a numerical-relativity (NR) calibrated waveform model, the TF2+_Kyoto model, which includes nonlinear tidal terms. For GW170817, by imposing a uniform prior on the binary tidal deformability $tilde{Lambda}$, the symmetric $90%$ credible interval of $tilde{Lambda}$ is estimated to be $481^{+436}_{-359}$ and $402^{+465}_{-279}$ for the case of $f_mathrm{max}=1000$ and $2048~mathrm{Hz}$, respectively, where $f_mathrm{max}$ is the maximum frequency in the analysis. We also reanalyze the event with other waveform models: two post-Newtonian waveform models (TF2_PNTidal and TF2+_PNTidal), the TF2+_NRTidal model that is another NR calibrated waveform model, and its upgrade, the TF2+_NRTidalv2 model. While estimates of parameters other than $tilde{Lambda}$ are broadly consistent among various waveform models, our results indicate that estimates of $tilde{Lambda}$ depend on waveform models. However, the difference is smaller than the statistical error. For GW190425, we can only obtain little information on the binary tidal deformability. The systematic difference among the NR calibrated waveform models will become significant to measure $tilde{Lambda}$ as the number of detectors and events increase and sensitivities of detectors are improved.
We have examined gravitational wave echo signals for nine binary black hole merger events observed by Advanced LIGO and Virgo during the first and second observation runs. To construct an echo template, we consider Kerr spacetime, where the event hor izon is replaced by a reflective membrane. We use frequency-dependent reflection rate at the angular potential barrier, which is fitted to the numerical data obtained by solving Teukolsky equations. This reflection rate gives a frequency-dependent transmission rate that is suppressed at lower frequencies in the template. We also take into account the overall phase shift of the waveform as a parameter, which arises when the wave is reflected at the membrane and potential barrier. Using this template based on black hole perturbation, we find no significant echo signals in the binary black hole merger events.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا