ترغب بنشر مسار تعليمي؟ اضغط هنا

Using the techniques developed in arxiv: 1203.3544 we compute the universal part of the equilibrium partition function characteristic of a theory with multiple abelian U(1) anomalies in arbitrary even spacetime dimensions. This contribution is closel y linked to the universal anomaly induced transport coefficients in hydrodynamics which have been studied before using entropy techniques. Equilibrium partition function provides an alternate and a microscopically more transparent way to derive the constraints on these transport coefficients. We re-derive this way all the known results on these transport coefficients including their polynomial structure which has recently been conjectured to be linked to the anomaly polynomial of the theory. Further we link the local description of anomaly induced transport in terms of a Gibbs current to the more global description in terms of the partition function .
We extend the recent work on fluid-gravity correspondence to charged black-branes by determining the metric duals to arbitrary charged fluid configuration up to second order in the boundary derivative expansion. We also derive the energy-momentum ten sor and the charge current for these configurations up to second order in the boundary derivative expansion. We find a new term in the charge current when there is a bulk Chern-Simons interaction thus resolving an earlier discrepancy between thermodynamics of charged rotating black holes and boundary hydrodynamics. We have also confirmed that all our expressions are covariant under boundary Weyl-transformations as expected.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا