ترغب بنشر مسار تعليمي؟ اضغط هنا

104 - C.M. Casey 2014
Galaxies rest-frame ultraviolet (UV) properties are often used to directly infer the degree to which dust obscuration affects the measurement of star formation rates. While much recent work has focused on calibrating dust attenuation in galaxies sele cted at rest-frame ultraviolet wavelengths, locally and at high-$z$, here we investigate attenuation in dusty, star-forming galaxies (DSFGs) selected at far-infrared wavelengths. By combining multiwavelength coverage across 0.15--500,$mu$m in the COSMOS field, in particular making use of {it Herschel} imaging, and a rich dataset on local galaxies, we find a empirical variation in the relationship between rest-frame UV slope ($beta$) and ratio of infrared-to-ultraviolet emission ($L_{rm IR}/L_{rm UV}equiv,IRX$) as a function of infrared luminosity, or total star formation rate, SFR. Both locally and at high-$z$, galaxies above SFR$gt$50,M$_odot$,yr$^{-1}$ deviate from the nominal $IRX-beta$ relation towards bluer colors by a factor proportional to their increasing IR luminosity. We also estimate contamination rates of DSFGs on high-$z$ dropout searches of $ll1$% at $zlt4-10$, providing independent verification that contamination from very dusty foreground galaxies is low in LBG searches. Overall, our results are consistent with the physical interpretation that DSFGs, e.g. galaxies with $>50$,M$_odot$,yr$^{-1}$, are dominated at all epochs by short-lived, extreme burst events, producing many young O and B stars that are primarily, yet not entirely, enshrouded in thick dust cocoons. The blue rest-frame UV slopes of DSFGs are inconsistent with the suggestion that most DSFGs at $zsim2$ exhibit steady-state star formation in secular disks.
We present three bright z+ dropout candidates selected from deep Near-Infrared (NIR) imaging of the COSMOS 2 square degree field. All three objects match the 0.8-8um colors of other published z>7 candidates but are three magnitudes brighter, facilita ting further study. Deep spectroscopy of two of the candidates covering 0.64-1.02um with Keck-DEIMOS and all three covering 0.94-1.10um and 1.52-1.80um with Keck-NIRSPEC detects weak spectral features tentatively identified as Ly-alpha at z=6.95 and z=7.69 in two of the objects. The third object is placed at z~1.6 based on a 24um and weak optical detection. A comparison with the spectral energy distributions of known z<7 galaxies, including objects with strong spectral lines, large extinction, and large systematic uncertainties in the photometry yields no objects with similar colors. However, the lambda>1um properties of all three objects can be matched to optically detected sources with photometric redshifts at z~1.8, so the non-detection in the i+ and z+ bands are the primary factors which favors a z>7 solution. If any of these objects are at z~7 the bright end of the luminosity function is significantly higher at z>7 than suggested by previous studies, but consistent within the statistical uncertainty and the dark matter halo distribution. If these objects are at low redshift, the Lyman-Break selection must be contaminated by a previously unknown population of low redshift objects with very strong breaks in their broad band spectral energy distributions and blue NIR colors. The implications of this result on luminosity function evolution at high redshift is discussed. We show that the primary limitation of z>7 galaxy searches with broad filters is the depth of the available optical data.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا