ترغب بنشر مسار تعليمي؟ اضغط هنا

Application of root density estimator to problems of statistical data analysis is demonstrated. Four sets of basis functions based on Chebyshev-Hermite, Laguerre, Kravchuk and Charlier polynomials are considered. The sets may be used for numerical an alysis in problems of reconstructing statistical distributions by experimental data. Based on the root approach to reconstruction of statistical distributions and quantum states, we study a family of statistical distributions in which the probability density is the product of a Gaussian distribution and an even-degree polynomial. Examples of numerical modeling are given. The results of present paper are of interest for the development of tomography of quantum states and processes.
We have developed a method for complementing an arbitrary classical dynamical system to a quantum system using the Lorenz and Rossler systems as examples. The Schrodinger equation for the corresponding quantum statistical ensemble is described in ter ms of the Hamilton-Jacobi formalism. We consider both the original dynamical system in the position space and the conjugate dynamical system corresponding to the momentum space. Such simultaneous consideration of mutually complementary position and momentum frameworks provides a deeper understanding of the nature of chaotic behavior in dynamical systems. We have shown that the new formalism provides a significant simplification of the Lyapunov exponents calculations. From the point of view of quantum optics, the Lorenz and Rossler systems correspond to three modes of a quantized electromagnetic field in a medium with cubic nonlinearity. From the computational point of view, the new formalism provides a basis for the analysis of complex dynamical systems using quantum computers.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا