ترغب بنشر مسار تعليمي؟ اضغط هنا

We study the validity of a partition property known as weak indivisibility for the integer and the rational Urysohn metric spaces. We also compare weak indivisiblity to another partition property, called age-indivisibility, and provide an example of a countable ultrahomogeneous metric space which may be age-indivisible but not weakly indivisible.
We solve the oscillation stability problem for the Urysohn sphere, an analog of the distortion problem for the Hilbert space in the context of the Urysohn universal metric space. This is achieved by solving a purely combinatorial problem involving a family of countable homogeneous metric spaces with finitely many distances.
We study the finite dimensional partition properties of the countable homogeneous dense local order. Some of our results use ideas borrowed from the partition calculus of the rationals and are obtained thanks to a strengthening of Millikens theorem on trees.
The distinguishing number of a graph $G$ is the smallest positive integer $r$ such that $G$ has a labeling of its vertices with $r$ labels for which there is no non-trivial automorphism of $G$ preserving these labels. Albertson and Collins computed t he distinguishing number for various finite graphs, and Imrich, Klavv{z}ar and Trofimov computed the distinguishing number of some infinite graphs, showing in particular that the Random Graph has distinguishing number 2. We compute the distinguishing number of various other finite and countable homogeneous structures, including undirected and directed graphs, and posets. We show that this number is in most cases two or infinite, and besides a few exceptions conjecture that this is so for all primitive homogeneous countable structures.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا