ترغب بنشر مسار تعليمي؟ اضغط هنا

The microstructure of Bi2Se3 topological-insulator thin films grown by molecular beam epitaxy on InP(111)A and InP(111)B substrates that have different surface roughnesses has been studied in detail using X-ray diffraction, X-ray reflectivity, atomic force microscopy and probe-corrected scanning transmission electron microscopy. The use of a rough Fe-doped InP(111)B substrate results in complete suppression of twin formation in the Bi2Se3 thin films and a perfect interface between the films and their substrates. The only type of structural defects that persist in the twin-free films is an antiphase domain boundary, which is associated with variations in substrate height. It is also shown that the substrate surface termination determines which family of twin domains dominates.
Epitaxial layers of the topological insulator Bi2Se3 have been grown by molecular beam epitaxy on laterally lattice-matched InP(111)B substrates. High resolution X-ray diffraction shows a significant improvement of Bi2Se3 crystal quality compared to layers deposited on other substrates. The measured full width at half maximum of the rocking curve is Delta omega=13 arcsec, and the (omega-2theta) scans exhibit clear layer thickness fringes. Atomic force microscope images show triangular twin domains with sizes increasing with layer thickness. The structural quality of the domains is confirmed on the microscopic level by transmission electron microscopy.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا