ترغب بنشر مسار تعليمي؟ اضغط هنا

82 - N. V. Sujatha 2010
We have studied small scale (2 arcmin) spatial variation of the diffuse UV radiation using a set of 11 GALEX deep observations in the constellation of Draco. We find a good correlation between the observed UV background and the IR 100 micron flux, in dicating that the dominant contributor of the diffuse background in the field is the scattered starlight from the interstellar dust grains. We also find strong evidence of additional emission in the FUV band which is absent in the NUV band. This is most likely due to Lyman band emission from molecular hydrogen in a ridge of dust running through the field and to line emissions from species such as C IV (1550 A) and Si II (1533 A) in the rest of the field. A strong correlation exists between the FUV/NUV ratio and the FUV intensity in the excess emission regions in the FUV band irrespective of the optical depth of the region. The optical depth increases more rapidly in the UV than the IR and we find that the UV/IR ratio drops off exponentially with increasing IR due to saturation effects in the UV. Using the positional details of Spitzer extragalactic objects, we find that the contribution of extragalactic light in the diffuse NUV background is 49 +/- 13 photon units and is 30 +/- 10 photon units in the FUV band.
159 - N. V. Sujatha 2008
Using the GALEX ultraviolet imagers we have observed a region of nebulosity first identified as starlight scattered by interstellar dust by Sandage (1976). Apart from airglow and zodiacal emission, we have found a diffuse UV background of between 500 and 800 phunit in both the galex FUV (1350 -- 1750 AA) and NUV (1750 -- 2850 AA). Of this emission, up to 250 phunit is due to htwo fluorescent emission in the FUV band; the remainder is consistent with scattering from interstellar dust. We have estimated the optical constants to be $a = 0.3; g = 0.7$ in the FUV and $a = 0.5; g = 0.7$ in the NUV, implying highly forward scattering grains, plus an extragalactic contribution of as much as 150 phunit. These are the highest spatial resolution observations of the diffuse UV background to date and show an intrinsic scatter beyond that expected from instrumental noise alone. Further modeling is required to understand the nature of this scatter and its implications for the ISM.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا