ترغب بنشر مسار تعليمي؟ اضغط هنا

Transverse momentum spectra of charged particle production in heavy-ion collisions are considered in terms of a recently introduced Two Component parameterization combining exponential (soft) and power-law (hard) functional forms. The charged hadron densities calculated separately for them are plotted versus number of participating nucleons, $N_{part}$. The obtained dependences are discussed and the possible link between the two component parameterization introduced by the authors and the two component model historically used for the case of heavy-ion collisions is established. Next, the variations of the parameters of the introduced approach with the center of mass energy and centrality are studied using the available data from RHIC and LHC experiments. The spectra shapes are found to show universal dependences on $N_{part}$ for all investigated collision energies.
The dependence of the spectra shape of produced charged hadrons on the size of a colliding system is discussed using a two component model. As a result, the hierarchy by the system-size in the spectra shape is observed. Next, the hydrodynamic extensi on of the two component model for hadroproduction using recent theoretical calculations is suggested to describe the spectra of charged particles produced in heavy-ion collisions in the full range of transverse momenta, $p_T$. Data from heavy-ion collisions measured at RHIC and LHC are analyzed using the introduced approach and are combined in terms of energy density. The observed regularities might be explained by the formation of QGP during the collision.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا