ترغب بنشر مسار تعليمي؟ اضغط هنا

Single molecule transistors (SMTs) are currently attracting enormous attention as possible quantum information processing devices. An intrinsic limitation to the prospects of these however is associated to the presence of a small number of quantized conductance channels, each channel having a high access resistance of at best $R_{K}/2=h/2e^{2}$=12.9 k$Omega$. When the contacting leads become superconducting, these correlations can extend throughout the whole system by the proximity effect. This not only lifts the resistive limitation of normal state contacts, but further paves a new way to probe electron transport through a single molecule. In this work, we demonstrate the realization of superconducting SMTs involving a single C60 fullerene molecule. The last few years have seen gate-controlled Josephson supercurrents induced in the family of low dimensional carbon structures such as flakes of two-dimensional graphene and portions of one-dimensional carbon nanotubes. The present study involving a full zero-dimensionnal fullerene completes the picture.
We have used the electromigration technique to fabricate a $rm{C_{{60}}}$ single-molecule transistor (SMT). We present a full experimental study as a function of temperature, down to 35 mK, and as a function of magnetic field up to 8 T in a SMT wit h odd number of electrons, where the usual spin-1/2 Kondo effect occurs, with good agreement with theory. In the case of even number of electrons, a low temperature magneto-transport study is provided, which demonstrates a Zeeman splitting of the zero-bias anomaly at energies well below the Kondo scale.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا