ترغب بنشر مسار تعليمي؟ اضغط هنا

We explore the non-equilibrium response of Chern insulators. Focusing on the Haldane model, we study the dynamics induced by quantum quenches between topological and non-topological phases. A notable feature is that the Chern number, calculated for a n infinite system, is unchanged under the dynamics following such a quench. However, in finite geometries, the initial and final Hamiltonians are distinguished by the presence or absence of edge modes. We study the edge excitations and describe their impact on the experimentally-observable edge currents and magnetization. We show that, following a quantum quench, the edge currents relax towards new equilibrium values, and that there is light-cone spreading of the currents into the interior of the sample.
188 - N. R. Cooper , A. M. Rey 2015
We describe forms of adiabatic transport that arise for dressed-state atoms in optical lattices. Focussing on the limit of weak tunnel-coupling between nearest-neighbour lattice sites, we explain how adiabatic variation of optical dressing allows con trol of atomic motion between lattice sites: allowing adiabatic particle transport in a direction that depends on the internal state, and force measurements via spectroscopic preparation and readout. For uniformly filled bands these systems display topologically quantised particle transport.
We discuss the diamagnetism induced in an isolated quantum Hall bilayer with total filling factor one by an in-plane magnetic field. This is a signature of counterflow superfluidity in these systems. We calculate magnetically induced currents in the presence of pinned vortices nucleated by charge disorder, and predict a history-dependent diamagnetism that could persist on laboratory timescales. For current samples we find that the maximum in-plane moment is small, but with stronger tunneling the moments would be measurable using torque magnetometry. Such experiments would allow the persistent currents of a counterflow superfluid to be observed in an electrically isolated bilayer.
85 - N. R. Cooper 2009
This article reviews developments in the theory of rapidly rotating degenerate atomic gases. The main focus is on the equilibrium properties of a single component atomic Bose gas, which (at least at rest) forms a Bose-Einstein condensate. Rotation le ads to the formation of quantized vortices which order into a vortex array, in close analogy with the behaviour of superfluid helium. Under conditions of rapid rotation, when the vortex density becomes large, atomic Bose gases offer the possibility to explore the physics of quantized vortices in novel parameter regimes. First, there is an interesting regime in which the vortices become sufficiently dense that their cores -- as set by the healing length -- start to overlap. In this regime, the theoretical description simplifies, allowing a reduction to single particle states in the lowest Landau level. Second, one can envisage entering a regime of very high vortex density, when the number of vortices becomes comparable to the number of particles in the gas. In this regime, theory predicts the appearance of a series of strongly correlated phases, which can be viewed as {it bosoni
104 - J. Levinsen , N. R. Cooper , 2008
We study the stability of the paired fermionic p-wave superfluid made out of identical atoms all in the same hyperfine state close to a p-wave Feshbach resonance. First we reproduce known results concerning the lifetime of a 3D superfluid, in particu lar, we show that it decays at the same rate as its interaction energy, thus precluding its equilibration before it decays. Then we proceed to study its stability in case when the superfluid is confined to 2D by means of an optical harmonic potential. We find that the relative stability is somewhat improved in 2D in the BCS regime, such that the decay rate is now slower than the appropriate interaction energy scale. The improvement in stability, however, is not dramatic and one probably needs to look for other mechanisms to suppress decay to create a long lived 2D p-wave fermionic superfluid.
113 - V. Tripathi , N. R. Cooper 2008
We propose a probe based on nuclear relaxation and Knight shift measurements for the Kondo scenario for the 0.7 feature in semiconductor quantum point contact (QPC) devices. We show that the presence of a bound electron in the QPC would lead to a muc h higher rate of nuclear relaxation compared to nuclear relaxation through exchange of spin with conduction electrons. Furthermore, we show that the temperature dependence of this nuclear relaxation is very non-monotonic as opposed to the linear-T relaxation from coupling with conduction electrons. We present a qualitative analysis for the additional relaxation due to nuclear spin diffusion (NSD) and study the extent to which NSD affects the range of validity of our method. The conclusion is that nuclear relaxation, in combination with Knight shift measurements, can be used to verify whether the 0.7 feature is indeed due to the presence of a bound electron in the QPC.
We propose a new method for dynamic nuclear polarisation in a quasi one-dimensional quantum wire utilising the spin-orbit interaction, the hyperfine interaction, and a finite source-drain potential difference. In contrast with current methods, our sc heme does not rely on external magnetic or optical sources which makes independent control of closely placed devices much more feasible. Using this method, a significant polarisation of a few per cent is possible in currently available InAs wires which may be detected by conductance measurements. This may prove useful for nuclear-magnetic-resonance studies in nanoscale systems as well as in spin-based devices where external magnetic and optical sources will not be suitable.
We describe how a local non-equilibrium nuclear polarisation can be generated and detected by electrical means in a semiconductor quantum point contact device. We show that measurements of the nuclear spin relaxation rate will provide clear signature s of the interaction mechanism underlying the 0.7 conductance anomaly. Our analysis illustrates how nuclear magnetic resonance methods, which are used extensively to study strongly-correlated electron phases in bulk materials, can be made to play a similarly important role in nanoscale devices.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا