ترغب بنشر مسار تعليمي؟ اضغط هنا

Some young, massive stars can be found in the Galactic halo. As star formation is unlikely to occur in the halo, they must have been formed in the disk and been ejected shortly afterwards. One explanation is a supernova in a tight binary system. The companion is ejected and becomes a runaway star. HD,271791 is the kinematically most extreme runaway star known (Galactic restframe velocity $725 pm 195, rm km,s^{-1}$, which is even larger than the Galactic escape velocity). Moreover, an analysis of the optical spectrum showed an enhancement of the $alpha$-process elements. This indicates the capture of supernova ejecta, and therefore an origin in a core-collapse supernova. As such high space velocities are not reached by the runaway stars in classical binary supernova ejection scenarios, a very massive but compact primary, probably of Wolf-Rayet type is required. HD,271791 is therefore a perfect candidate for studying nucleosynthesis in a supernova of probably type Ibc. The goal of this project is to determine the abundances of a large number of elements from the $alpha$-process, the iron group, and heavier elements by a quantitative analysis of the optical and UV spectral range. Detailed line-formation calculations are employed that account for deviations from local thermodynamic equilibrium (non-LTE). We intend to verify whether core-collapse supernova are a site of r-process element production. Here, we state the current status of the project.
We present an abundance analysis of 96 horizontal branch (HB) stars in NGC2808, a globular cluster exhibiting a complex multiple stellar population pattern. These stars are distributed in different portions of the HB and cover a wide range of tempera ture. By studying the chemical abundances of this sample, we explore the connection between HB morphology and the chemical enrichment history of multiple stellar populations. For stars lying on the red HB, we use GIRAFFE and UVES spectra to determine Na, Mg, Si, Ca, Sc, Ti, Cr, Mn, Fe, Ni, Zn, Y, Ba, and Nd abundances. For colder, blue HB stars, we derive abundances for Na, primarily from GIRAFFE spectra. We were also able to measure direct NLTE He abundances for a subset of these blue HB stars with temperature higher than ~9000 K. Our results show that: (i) HB stars in NGC2808 show different content in Na depending on their position in the color-magnitude diagram, with blue HB stars having higher Na than red HB stars; (ii) the red HB is not consistent with an uniform chemical abundance, with slightly warmer stars exhibiting a statistically significant higher Na content; and (iii) our subsample of blue HB stars with He abundances shows evidence of enhancement with respect to the predicted primordial He content by Delta(Y)=+0.09+-0.01. Our results strongly support theoretical models that predict He enhancement among second generation(s) stars in globular clusters and provide observational constraints on the second-parameter governing HB morphology.
62 - N. Przybilla 2010
Aims: We test predictions of evolution models on mixing of CNO-cycled products in massive stars from a fundamental perspective. Relative changes within the theoretical C:N:O abundance ratios and the buildup of helium are compared with observational r esults. Methods: A sample of well-studied Galactic massive stars is presented. High-quality optical spectra are carefully analysed using improved NLTE line-formation and comprehensive analysis strategies. The results are put in the context of the existing literature data. Results: A tight trend in the observed N/C vs. N/O ratios and the buildup of helium is found from the self-consistent analysis of main-sequence to supergiant stars for the first time. The catalytic nature of the CNO-cycles is confirmed quantitatively, though further investigations are required to derive a fully consistent picture. Our observational results support the case of strong mixing, as predicted e.g. by evolution models that consider magnetic fields or by models that have gone through the first dredge-up in the case of many supergiants.
54 - N. Przybilla 2008
Context: Hyper-velocity stars are suggested to originate from the dynamical interaction of binary stars with the supermassive black hole in the Galactic centre (GC), which accelerates one component of the binary to beyond the Galactic escape velocity . Aims: The evolutionary status and GC origin of the HVS SDSS J113312.12+010824.9 (HVS7) is constrained from a detailed study of its stellar parameters and chemical composition. Methods: High-resolution spectra of HVS7 obtained with UVES on the ESO VLT were analysed using state-of-the-art NLTE/LTE modelling techniques that can account for a chemically-peculiar composition via opacity sampling. Results: Instead of the expected slight enrichments of alpha-elements and near-solar Fe, huge chemical peculiarities of all elements are apparent. The He abundance is very low (<1/100 solar), C, N and O are below the detection limit, i.e they are underabundant (<1/100, <1/3 and <1/10 solar). Heavier elements, however, are overabundant: the iron group by a factor of ~10, P, Co and Cl by factors ~40, 80 and 440 and rare-earth elements and Hg even by ~10000. An additional finding, relevant also for other chemically peculiar stars are the large NLTE effects on abundances of TiII and FeII (~0.6-0.7dex). The derived abundance pattern of HVS7 is characteristic for the class of chemical peculiar magnetic B stars on the main sequence. The chemical composition and high vsini=55+-2km/s render a low mass nature of HVS7 as a blue horizontal branch star unlikely. Conclusions: Such a surface abundance pattern is caused by atomic diffusion in a possibly magnetically stabilised, non-convective atmosphere. Hence all chemical information on the stars place of birth and its evolution has been washed out. High precision astrometry is the only means to validate a GC origin for HVS7.
Context: Hyper-velocity stars move so fast that only a supermassive black hole (SMBH) seems to be capable to accelerate them. Hence the Galactic centre (GC) is their only suggested place of origin. Edelmann et al. (2005) found the early B-star HE0437 -5439 to be too short-lived to have reached its current position in the Galactic halo if ejected from the GC, except if being a blue straggler. Its proximity to the LMC suggested an origin from this galaxy. Aims: The chemical signatures of stars at the GC are significantly different from those in the LMC. Hence, an accurate measurement of the abundance pattern of HE0437-5439 will yield a new tight constraint on the place of birth of this star. Methods: High-resolution spectra obtained with UVES on the VLT are analysed using state-of-the-art non-LTE modelling techniques. Results: We measured abundances of individual elements to very high accuracy in HE0437-5439 as well as in two reference stars, from the LMC and the solar neighbourhood. The abundance pattern is not consistent at all with that observed in stars near the GC, ruling our an origin from the GC. However, there is a high degree of consistency with the LMC abundance pattern. Our abundance results cannot rule out an origin in the outskirts of the Galactic disk. However, we find the life time of HE0437-5439 to be more than 3 times shorter than the time of flight to the edge of the disk, rendering a Galactic origin unlikely. Conclusions: Only one SMBH is known to be present in Galaxy and none in the LMC. Hence the exclusion of an GC origin challenges the SMBH paradigm. We conclude that there must be other mechanism(s) to accelerate stars to hyper-velocity speed than the SMBH. We draw attention to dynamical ejection from dense massive clusters, that has recently been proposed by Gvaramadze et al. (2008).
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا