ترغب بنشر مسار تعليمي؟ اضغط هنا

In this work we study the noise induced effects on the dynamics of short polymers crossing a potential barrier, in the presence of a metastable state. An improved version of the Rouse model for a flexible polymer has been adopted to mimic the molecul ar dynamics by taking into account both the interactions between adjacent monomers and introducing a Lennard-Jones potential between all beads. A bending recoil torque has also been included in our model. The polymer dynamics is simulated in a two-dimensional domain by numerically solving the Langevin equations of motion with a Gaussian uncorrelated noise. We find a nonmonotonic behaviour of the mean first passage time and the most probable translocation time, of the polymer centre of inertia, as a function of the polymer length at low noise intensity. We show how thermal fluctuations influence the motion of short polymers, by inducing two different regimes of translocation in the molecule transport dynamics. In this context, the role played by the length of the molecule in the translocation time is investigated.
Studies about the constructive aspects of noise and fluctuations in different non-linear systems have shown that the addition of external noise to systems with an intrinsic noise may result in a less noisy response. Recently, the possibility to reduc e the diffusion noise in semiconductor bulk materials by adding a random fluctuating contribution to the driving static electric field has been tested. The present work extends the previous theories by considering the noise-induced effects on the electron transport dynamics in low-doped n-type GaAs samples driven by a high-frequency periodic electric field (cyclostationary conditions). By means of Monte Carlo simulations, we calculate the changes in the spectral density of the electron velocity fluctuations caused by the addition of an external correlated noise source. The results reported in this paper confirm that, under specific conditions, the presence of a fluctuating component added to an oscillating electric field can reduce the total noise power. Furthermore, we find a nonlinear behaviour of the spectral density with the noise intensity. Our study reveals that, critically depending on the external noise correlation time, the dynamical response of electrons driven by a periodic electric field receives a benefit by the constructive interplay between the fluctuating field and the intrinsic noise of the system.
The study of the noise induced effects on the dynamics of a chain molecule crossing a potential barrier, in the presence of a metastable state, is presented. A two-dimensional stochastic version of the Rouse model for a flexible polymer has been adop ted to mimic the molecular dynamics and to take into account the interactions between adjacent monomers. We obtain a nonmonotonic behavior of the mean first passage time and its standard deviation, of the polymer centre of inertia, with the noise intensity. These findings reveal a noise induced effect on the mean crossing time. The role of the polymer length is also investigated.
We investigate the modification of the intrinsic carrier noise spectral density induced in low-doped semiconductor materials by an external correlated noise source added to the driving high-frequency periodic electric field. A Monte Carlo approach is adopted to numerically solve the transport equation by considering all the possible scattering phenomena of the hot electrons in the medium. We show that the noise spectra are strongly affected by the intensity and the correlation time of the external random electric field. Moreover this random field can cause a suppression of the total noise power.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا