ترغب بنشر مسار تعليمي؟ اضغط هنا

61 - N. Phan-Bao 2011
In this paper, we describe how to use the Maximum Reduced Proper Motion method (Phan-Bao et al. 2003) to detect 57 nearby L and late-M dwarfs (d_phot <= 30 pc): 36 of them are newly discovered. Spectroscopic observations of 43 of the 57 ultracool dwa rfs were previously reported in Martin et al. (2010). These ultracool dwarfs were identified by color criteria in ~5,000 square degrees of the DENIS database and then further selected by the method for spectroscopic follow-up to determine their spectral types and spectroscopic distances. We also report here our newly measured proper motions of these ultracool dwarfs from multi-epoch images found in public archives (ALADIN, DSS, 2MASS, DENIS), with at least three distinct epochs and time baselines of 2 to 46 years.
328 - N. Phan-Bao 2009
(ABRIDGED) We report here our mapping of the magnetic field topology of the M4 dwarf G 164-31 (or Gl 490B), which is expected to be fully convective, based on time series data collected from 20 hours of observations spread over 3 successive nights wi th the ESPaDOnS spectropolarimeter. Our tomographic imaging technique applied to time series of rotationally modulated circularly polarized profiles reveals an axisymmetric large-scale poloidal magnetic field on the M4 dwarf. We then apply a synthetic spectrum fitting technique for measuring the average magnetic flux on the star. The flux measured in G 164-31 is Bf = 3.2+-0.4 kG, which is significantly greater than the average value of 0.68 kG determined from the imaging technique. The difference indicates that a significant fraction of the stellar magnetic energy is stored in small-scale structures at the surface of G 164-31. Our H_alpha emission light curve shows evidence for rotational modulation suggesting the presence of localized structure in the chromosphere of this M dwarf. The radius of the M4 dwarf derived from the rotational period and the projected equatorial velocity is at least 30% larger than that predicted from theoretical models. We argue that this discrepancy is likely primarily due to the young nature of G 164-31 rather than primarily due to magnetic field effects, indicating that age is an important factor which should be considered in the interpretation of this observational result. We also report here our polarimetric observations of five other M dwarfs with spectral types from M0 to M4.5, three of them showing strong Zeeman signatures.
[Abridged] We present an 8.5-hour simultaneous radio, X-ray, UV, and optical observation of the L dwarf binary 2MASSW J0746+20. We detect strong radio emission, dominated by short-duration periodic pulses at 4.86 GHz with P=124.32+/-0.11 min. The sta bility of the pulse profiles and arrival times demonstrates that they are due to the rotational modulation of a B~1.7 kG magnetic field. A quiescent non-variable component is also detected, likely due to emission from a uniform large-scale field. The H-alpha emission exhibits identical periodicity, but unlike the radio pulses it varies sinusoidally and is offset by exactly 1/4 of a phase. The sinusoidal variations require chromospheric emission from a large-scale field structure, with the radio pulses likely emanating from the magnetic poles. While both light curves can be explained by a rotating mis-aligned magnetic field, the 1/4 phase lag rules out a symmetric dipole topology since it would result in a phase lag of 1/2 (poloidal field) or zero (toroidal field). We therefore conclude that either (i) the field is dominated by a quadrupole configuration, which can naturally explain the 1/4 phase lag; or (ii) the H-alpha and/or radio emission regions are not trivially aligned with the field. Regardless of the field topology, we use the measured period along with the known rotation velocity (vsini=27 km/s), and the binary orbital inclination (i=142 deg), to derive a radius for the primary star of 0.078+/-0.010 R_sun. This is the first measurement of the radius of an L dwarf, and along with a mass of 0.085+/-0.010 M_sun it provides a constraint on the mass-radius relation below 0.1 M_sun. We find that the radius is about 30% smaller than expected from theoretical models, even for an age of a few Gyr.
We report new nearby L and late-M dwarfs (d_phot <= 30 pc) discovered in our search for nearby ultracool dwarfs (I-J >= 3.0, later than M8.0) at low Galactic latitude (|b| < 15 degr) over 4,800 square degrees in the DENIS database. We used late-M (>= M8.0), L, and T dwarfs with accurate trigonometric parallaxes to calibrate the M_J versus I-J colour-luminosity relation. The resulting photometric distances have standard errors of ~15%, which we used to select candidates d_phot <= 30 pc. We measured proper motions from multi-epoch images found in the public archives ALADIN, DSS, 2MASS, DENIS, with at least three distinct epochs and time baselines of 10 to 21 years. We then used a Maximum Reduced Proper Motion cutoff to select 28 candidates as ultracool dwarfs (M8.0--L8.0) and to reject one as a distant red star. No T dwarf candidates were found in this search which required an object to be detected in all three DENIS bands. Our low-resolution optical spectra confirmed that 26 of them were indeed ultracool dwarfs, with spectral types from M8.0 to L5.5. Two contaminants and one rejected by the Maximum Reduced Proper Motion cutoff were all reddened F-K main sequence stars. 20 of these 26 ultracool dwarfs are new nearby ultracool dwarf members, three L dwarfs within 15 pc with one L3.5 at only ~10 pc. We determine a stellar density of bar{Phi}_J cor=(1.64 +- 0.46).10^{-3} dwarfs pc^{-3} mag^{-1} over 11.1 <= M_J <= 13.1 based on that sample of M8--L3.5 ultracool dwarfs. Our ultracool dwarf density value is in good agreement with the Cruz et al. measurement of the ultracool dwarf density at high Galactic latitude.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا