ترغب بنشر مسار تعليمي؟ اضغط هنا

90 - N. Battaglia 2014
Recent first detections of the cross-correlation of the thermal Sunyaev-Zeldovich (tSZ) signal in Planck cosmic microwave background (CMB) temperature maps with gravitational lensing maps inferred from the Planck CMB data and the CFHTLenS galaxy surv ey provide new probes of the relationship between baryons and dark matter. Using cosmological hydrodynamics simulations, we show that these cross-correlation signals are dominated by contributions from hot gas in the intracluster medium (ICM), rather than diffuse, unbound gas located beyond the virial radius (the missing baryons). Thus, these cross-correlations offer a tool with which to study the ICM over a wide range of halo masses and redshifts. In particular, we show that the tSZ - CMB lensing cross-correlation is more sensitive to gas in lower-mass, higher-redshift halos and gas at larger cluster-centric radii than the tSZ - galaxy lensing cross-correlation. Combining these measurements with primary CMB data will constrain feedback models through their signatures in the ICM pressure profile. We forecast the ability of ongoing and future experiments to constrain such ICM parameters, including the mean amplitude of the pressure - mass relation, the redshift evolution of this amplitude, and the mean outer logarithmic slope of the pressure profile. The results are promising, with $approx 5-20$% precision constraints achievable with upcoming experiments, even after marginalizing over cosmological parameters.
We report the direct observation of resistive flow through a weak link in a weakly interacting atomic Bose-Einstein condensate. Two weak links separate our ring-shaped superfluid atomtronic circuit into two distinct regions, a source and a drain. Mot ion of these weak links allows for creation of controlled flow between the source and the drain. At a critical value of the weak link velocity, we observe a transition from superfluid flow to superfluid plus resistive flow. Working in the hydrodynamic limit, we observe a conductivity that is 4 orders of magnitude larger than previously reported conductivities for a Bose-Einstein condensate with a tunnel junction. Good agreement with zero-temperature Gross-Pitaevskii simulations and a phenomenological model based on phase slips indicate that the creation of excitations plays an important role in the resulting conductivity. Our measurements of resistive flow elucidate the microscopic origin of the dissipation and pave the way for more complex atomtronic devices.
Photoionization modeling of the low-ionization broad absorption lines of certain quasars, known as FeLoBALs, has recently revealed the number density of the wind absorbers and their distance from the central supermassive black hole. From these, the f eedback efficiency of the quasars can in principle be derived. The implied properties of the FeLoBALs are, however, surprising, with the thickness of the absorbers relative to their distance from the black hole, Delta R/R, as small as ~10^-5. Such absorbers are unlikely to survive the journey from the supermassive black hole to their inferred location. We show that the observed FeLoBAL properties are readily explained if they are formed in situ in radiative shocks produced when a quasar blast wave impacts a moderately dense interstellar clump along the line of sight. This physical picture differs significantly from the thin shell approximation often assumed, and implies outflow rates, kinetic luminosities and momentum fluxes that differ correspondingly, in some cases at the order of magnitude level. Using the radiative shock model, we estimate the ratio of the outflow kinetic luminosity to bolometric luminosity for three bright FeLoBAL quasars in the literature. We find Edot/Lbol~2-5% (and corresponding momentum fluxes Pdot~2-15 Lbol/c), similar to what is adopted in models reproducing the M-sigma relation. These outflow properties are also comparable to those recently inferred for molecular outflows in local ultra-luminous infrared galaxies, suggesting that active galactic nuclei are capable of driving such outflows.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا