ترغب بنشر مسار تعليمي؟ اضغط هنا

We report on 49 fast-mode forward shocks propagating inside coronal mass ejections (CMEs) as measured by Wind and ACE at 1 AU from 1997 to 2006. Compared to typical CME-driven shocks, these shocks propagate in different upstream conditions, where the median upstream Alfv{e}n speed is 85 km s$^{-1}$, the proton $beta = 0.08$ and the magnetic field strength is 8 nT. These shocks are fast with a median speed of 590 km s$^{-1}$ but weak with a median Alfv{e}nic Mach number of 1.9. They typically compress the magnetic field and density by a factor of 2-3. The most extreme upstream conditions found were a fast magnetosonic speed of 230 km s$^{-1}$, a plasma $beta$ of 0.02, upstream solar wind speed of 740 km s$^{-1}$ and density of 0.5 cm$^{-3}$. Nineteen of these complex events were associated with an intense geomagnetic storm (peak Dst under $-100$ nT) within 12 hours of the shock detection at Wind, and fifteen were associated with a drop of the storm-time Dst index of more than 50 nT between 3 and 9 hours after shock detection. We also compare them to a sample of 45 shocks propagating in more typical upstream conditions. We show the average property of these shocks through a superposed epoch analysis, and we present some analytical considerations regarding the compression ratios of shocks in low $beta$ regimes. As most of these shocks are measured in the back half of a CME, we conclude that about half the shocks may not remain fast-mode shocks as they propagate through an entire CME due to the large upstream and magnetosonic speeds.
180 - N. Lugaz 2013
We report on a numerical investigation of two coronal mass ejections (CMEs) which interact as they propagate in the inner heliosphere. We focus on the effect of the orientation of the CMEs relative to each other by performing four different simulatio ns with the axis of the second CME rotated by 90 degrees from one simulation to the next. Each magneto-hydrodynamic (MHD) simulation is performed in three dimensions (3-D) with the Space Weather Modeling Framework (SWMF) in an idealized setting reminiscent of solar minimum conditions. We extract synthetic satellite measurements during and after the interaction and compare the different cases. We also analyze the kinematics of the two CMEs, including the evolution of their widths and aspect ratios. We find that the first CME contracts radially as a result of the interaction in all cases, but the amount of subsequent radial expansion depends on the relative orientation of the two CMEs. Reconnection between the two ejecta and between the ejecta and the interplanetary magnetic field (IMF) determines the type of structure resulting from the interaction. When a CME with a high inclination with respect to the ecliptic overtakes one with a low inclination, it is possible to create a compound event with a smooth rotation in the magnetic field vector over more than 180 degrees. Due to reconnection, the second CME only appears as an extended tail, and the event may be mistaken for a glancing encounter with an isolated CME. This configuration differs significantly from the one usually studied of a multiple-magnetic cloud event, which we found to be associated with the interaction of two CMEs with the same orientation.
We discuss how some coronal mass ejections (CMEs) originating from the western limb of the Sun are associated with space weather effects such as solar energetic particles (SEPs), shock or geo-effective ejecta at Earth. We focus on the August 24, 2002 coronal mass ejection, a fast (~ 2000 km/s) eruption originating from W81. Using a three-dimensional magneto-hydrodynamic simulation of this ejection with the Space Weather Modeling Framework (SWMF), we show how a realistic initiation mechanism enables us to study the deflection of the CME in the corona and the heliosphere. Reconnection of the erupting magnetic field with that of neighboring streamers and active regions modify the solar connectivity of the field lines connecting to Earth and can also partly explain the deflection of the eruption during the first tens of minutes. Comparing the results at 1 AU of our simulation with observations by the ACE spacecraft, we find that the simulated shock does not reach Earth, but has a maximum angular span of about 120$^circ$, and reaches 35$^circ$ West of Earth in 58 hours. We find no significant deflection of the CME and its associated shock wave in the heliosphere, and we discuss the consequences for the shock angular span.
The interaction of multiple Coronal Mass Ejections (CMEs) has been observed by LASCO coronagraphs and by near-Earth spacecraft, and it is thought to be an important cause of geo-effective storms, large Solar Energetic Particles events and intense Typ e II radio bursts. New and future missions such as STEREO, the LWS Sentinels, and the Solar Orbiter will provide additional observations of the interaction of multiple CMEs between the Sun and the Earth. We present the results of simulations of two and more CMEs interacting in the inner heliosphere performed with the Space Weather Modeling Framework (SWMF). Based on those simulations, we discuss the observational evidence of the interaction of multiple CMEs, both in situ and from coronagraphs. The clearest evidence of the interaction of the CMEs are the large temperature in the sheath, due to the shocks merging, and the brightness increase in coronagraphic images, associated with the interaction of the leading edges. The importance of having multiple satellites at different distances and angular positions from the Sun is also discussed.
We discuss features of coronal mass ejections (CMEs) that are specific to heliospheric observations at large elongation angles. Our analysis is focused on a series of two eruptions that occurred on 2007 January 24-25, which were tracked by the Helios pheric Imagers (HIs) onboard STEREO. Using a three-dimensional (3-D) magneto-hydrodynamic simulation of these ejections with the Space Weather Modeling Framework (SWMF), we illustrate how the combination of the 3-D nature of CMEs, solar rotation, and geometry associated with the Thomson sphere results in complex effects in the brightness observed by the HIs. Our results demonstrate that these effects make any in-depth analysis of CME observations without 3-D simulations challenging. In particular, the association of bright features seen by the HIs with fronts of CME-driven shocks is far from trivial. In this Letter, we argue that, on 2007 January 26, the HIs observed not only two CMEs, but also a dense corotating stream compressed by the CME-driven shocks.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا