ترغب بنشر مسار تعليمي؟ اضغط هنا

118 - U. Stockert , N. Leps , L. Wang 2012
We have studied the magnetism of the Pr3+ ions in PrFeAsO_1-xF_x (x = 0; 0.15) and its interaction with the Fe magnetic order (for x = 0). Specific heat data confirm the presence of a first excited crystal electric field (CEF) level around 3.5 meV in the undoped compound PrFeAsO. This finding is in agreement with recent neutron scattering experiments. The doped compound is found to have a much lower first CEF splitting of about 2.0 meV. The Pr ordering in PrFeAsO gives rise to large anomalies in the specific heat and the thermal expansion coefficient. In addition, a field-induced transition is found at low temperatures that is most pronounced for the magnetostriction coefficient. This transition, which is absent in the doped compound, is attributed to a reversal of the Fe spin canting as the antiferromagnetic Pr order is destroyed by the external magnetic field.
We have studied the interplay of magnetism and superconductivity in LaFeAsO$_{1-x}$F$_x$ and Ca(Fe$_{1-x}$Co$_x$)$_2$As$_2$. While antiferromagnetic spin density wave formation is suppressed and superconductivity evolves, all samples show a doping in dependent strong increase of the normal state susceptibility upon heating which appears a general feature of iron pnictides. The data provide evidence for robust local antiferromagnetic correlations persisting even in the superconducting regime of the phase diagram.
75 - L. Wang , U. Kohler , N. Leps 2009
We present measurements of the thermal expansion coefficient alpha of polycrystalline LaFeAsO1-xFx (x <= 0.1). The magnetic and structural transitions of the samples with x <= 0.04 give rise to large anomalies in alpha(T), while the onset of supercon ductivity in the crystals with x >= 0.05 is not resolved. Above the structural transition, the thermal expansion coefficient of LaFeAsO is significantly enhanced. This is attributed to fluctuations, which also affect the electrical transport properties of the compound. The complete absence of these fluctuations in the superconducting samples even for x = 0.05 is taken as evidence for an abrupt first-order type of suppression of the structural and magnetic transitions upon F doping.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا