ترغب بنشر مسار تعليمي؟ اضغط هنا

We present and make publicly available the first data release (DR1) of the Keck Observatory Database of Ionized Absorption toward Quasars (KODIAQ) survey. The KODIAQ survey is aimed at studying galactic and circumgalactic gas in absorption at high-re dshift, with a focus on highly-ionized gas traced by OVI, using the HIRES spectrograph on the Keck-I telescope. KODIAQ DR1 consists of a fully-reduced sample of 170 quasars at 0.29 < z_em < 5.29 observed with HIRES at high resolution (36,000 <= R <= 103,000) between 2004 and 2012. DR1 contains 247 spectra available in continuum normalized form, representing a sum total exposure time of ~1.6 megaseconds. These co-added spectra arise from a total of 567 individual exposures of quasars taken from the Keck Observatory Archive (KOA) in raw form and uniformly processed using a HIRES data reduction package made available through the XIDL distribution. DR1 is publicly available to the community, housed as a higher level science product at the KOA. We will provide future data releases that make further QSOs, including those with pre-2004 observations taken with the previous-generation HIRES detectors.
We assess the metal content of the cool (10^4 K) circumgalactic medium (CGM) about galaxies at z<1 using an H I-selected sample of 28 Lyman limit systems (LLS, defined here as absorbers with 16.2<log N(H I)<18.5) observed in absorption against backgr ound QSOs by the Cosmic Origins Spectrograph on-board the Hubble Space Telescope. The N(H I) selection avoids metallicity biases inherent in many previous studies of the low-redshift CGM. We compare the column densities of weakly ionized metal species (e.g., O II, Si II, Mg II) to N(H I) in the strongest H I component of each absorber. We find that the metallicity distribution of the LLS (and hence the cool CGM) is bimodal with metal-poor and metal-rich branches peaking at [X/H]=-1.6 and -0.3 (or about 2.5% and 50% solar metallicities). The cool CGM probed by these LLS is predominantly ionized. The metal-rich branch of the population likely traces winds, recycled outflows, and tidally stripped gas; the metal-poor branch has properties consistent with cold accretion streams thought to be a major source of fresh gas for star forming galaxies. Both branches have a nearly equal number of absorbers. Our results thus demonstrate there is a significant mass of previously-undiscovered cold metal-poor gas and confirm the presence of metal enriched gas in the CGM of z<1 galaxies.
39 - B. Savage , N. Lehner , 2011
Observations of the QSO HE 0226-4110 (zem = 0.495) with the Cosmic Origins Spectrograph (COS) from 1134 to 1796 {AA} with a resolution of ~17 km s-1 and signal-to- noise (S/N) per resolution element of 20 to 40 are used to study the multi-phase absor ption system at z = 0.20701 containing O VI and Ne VIII. The system was previously studied with lower S/N observations with FUSE and STIS. The COS observations provide more reliable measures of the H I and metal lines present in the system and reveal the clear presence of broad Lyman {alpha} (BLA) absorption with b = 72(+13, -6) km s-1 and logN(H I) = 13.87pm0.08. Detecting BLAs associated with warm gas absorbers is crucial for determining the temperature, metallicity and total baryonic content of the absorbers. The BLA is probably recording the trace amount of thermally broadened H I in the collisionally ionized plasma with log T ~5.7 that also produces the O VI and Ne VIII absorption. The total hydrogen column in the collisionally ionized gas, logN(H) ~ 20.1, exceeds that in the cooler photoionized gas in the system by a factor of ~22. The oxygen abundance in the collisionally ionized gas is [O/H] = -0.89pm0.08pm0.07. The absorber probably occurs in the circumgalactic environment (halo) of a foreground L = 0.25L* disk galaxy with an impact parameter of 109h70-1 kpc identified by Mulchaey & Chen (2009).
Observations of the QSO HE 0153-4520 (z-em = 0.450) with the Cosmic Origins Spectrograph (COS) from 1134 to 1796 A with a resolution of ~17 km/s and signal-to- noise per resolution element of 20 to 40 are used to study a multi-phase partial Lyman lim it system (LLS) at z = 0.22601 tracing both cool and hot gas. FUSE observations of the Lyman limit break yield log N(H I) = 16.61(0.12, -0.17) The observed UV absorption lines of H I 1216 to 926, C III, C II, N III, N II, Si III, and Si II imply the existence of cool photoionized gas in the LLS with log U = -2.8pm0.1 and log N(H) = 19.35pm0.18, log n(H) = -2.9pm0.2, log T = 4.27pm0.02, log (P/k) = 1.75pm0.17, and log L(kpc) = 0.70pm0.25. The abundances are [X/H] = -0.8 (+0.3, -0.2) for N, Si and C but the result is sensitive to the assumed shape of the ionizing background radiation field. The multi-phase system has strong O VI and associated broad Ly {alpha} absorption (BLA) with log N(O VI) = 14.21pm0.02, b(O VI) = 37pm1 km/s, log N(H I) = 13.70(+0.05,-0.08), b(H I)=140 (+14, -16) km/s and b(H I)/b(O VI) = 3.9pm0.4. The O VI does not arise in the cool photoionized gas of the LLS. The O VI and BLA imply the direct detection of thermally broadened absorption by hot gas with log T = 6.07 (+0.09, -0.12), [O/H] = -0.28 (+0.09, -0.08), and log N(H) = 20.41 (+0.13, -0.17). The absorber probably occurs in the circumgalactic environment (halo) of a foreground galaxy.
84 - N. Lehner , W.F. Zech , J.C. Howk 2010
The cooling transition temperature gas in the interstellar medium (ISM), traced by the high ions, Si IV, C IV, N V, and O VI, helps to constrain the flow of energy from the hot ISM with T >10^6 K to the warm ISM with T< 2x10^4 K. We investigate the p roperties of this gas along the lines of sight to 38 stars in the Milky Way disk using 1.5-2.7 km/s resolution spectra of Si IV, C IV, and N V absorption from the Space Telescope Imaging Spectrograph (STIS), and 15 km/s resolution spectra of O VI absorption from the Far Ultraviolet Spectroscopic Explorer (FUSE). The absorption by Si IV and C IV exhibits broad and narrow components while only broad components are seen in N V and O VI. The narrow components imply gas with T<7x10^4 K and trace two distinct types of gas. The strong, saturated, and narrow Si IV and C IV components trace the gas associated with the vicinities of O-type stars and their supershells. The weaker narrow Si IV and C IV components trace gas in the general ISM that is photoionized by the EUV radiation from cooling hot gas or has radiatively cooled in a non-equilibrium manner from the transition temperature phase, but rarely the warm ionized medium (WIM) probed by Al III. The broad Si IV, C IV, N V, and O VI components trace collisionally ionized gas that is very likely undergoing a cooling transition from the hot ISM to the warm ISM. The cooling process possibly provides the regulation mechanism that produces N(C IV)/N(Si IV) = 3.9 +/- 1.9. The cooling process also produces absorption lines where the median and mean values of the line widths increase with the energy required to create the ion.
166 - N. Lehner , J. C. Howk 2009
Previous HST and FUSE observations have revealed highly ionized high-velocity clouds (HVCs) or more generally low HI column HVCs along extragalactic sightlines over 70-90% of the sky. The distances of these HVCs have remained largely unknown hamperin g to distinguish a Galactic origin (e.g., outflow, inflow) from a Local Group origin (e.g., warm-hot intergalactic medium). We present the first detection of highly ionized HVCs in the Cosmic Origins Spectrograph (COS) spectrum of the early-type star HS1914+7134 (l = 103, b=+24) located in the outer region of the Galaxy at 14.9 kpc. Two HVCs are detected in absorption at v_LSR = -118 and -180 km/s in several species, including CIV, SiIV, SiIII, CII, SiII, OI, but HI 21-cm emission is only seen at -118 km. Within 17 degrees of HS1914+7134, we found HVC absorption of low and high ions at similar velocities toward 5 extragalactic sight lines, suggesting that these HVCs are related. The component at -118 km/s is likely associated with the Outer Arm of the Milky Way. The highly ionized HVC at -180 km/s is an HVC plunging at high speed onto the thick disk of the Milky Way. This is the second detection of highly ionized HVCs toward Galactic stars, supporting a Galactic origin for at least some of these clouds.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا