ترغب بنشر مسار تعليمي؟ اضغط هنا

Controlling the properties of semiconductor/metal interfaces is a powerful method for designing functionality and improving the performance of electrical devices. Recently semiconductor/superconductor hybrids have appeared as an important example whe re the atomic scale uniformity of the interface plays a key role for the quality of the induced superconducting gap. Here we present epitaxial growth of semiconductor-metal core-shell nanowires by molecular beam epitaxy, a method that provides a conceptually new route to controlled electrical contacting of nanostructures and for designing devices for specialized applications such as topological and gate-controlled superconducting electronics. Our materials of choice, InAs/Al, are grown with epitaxially matched single plane interfaces, and alternative semiconductor/metal combinations allowing epitaxial interface matching in nanowires are discussed. We formulate the grain growth kinetics of the metal phase in general terms of continuum parameters and bicrystal symmetries. The method realizes the ultimate limit of uniform interfaces and appears to solve the soft-gap problem in superconducting hybrid structures.
We report a method for making epitaxial superconducting contacts to semiconducting nanowires. The temperature and gate characteristics demonstrate barrier-free electrical contact, and the properties in the superconducting state are investigated at lo w temperature. Half-covering aluminum contacts are realized without the need of lithography and we demonstrate how to controllably insert high-band gap layers in the interface region. These developments are relevant to hybrid superconductor-nanowire devices that support Majorana zero energy states.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا