ترغب بنشر مسار تعليمي؟ اضغط هنا

Single photons are a vital resource for optical quantum information processing. Efficient and deterministic single photon sources do not yet exist, however. To date, experimental demonstrations of quantum processing primitives have been implemented u sing non-deterministic sources combined with heralding and/or postselection. Unfortunately, even for eight photons, the data rates are already so low as to make most experiments impracticable. It is well known that quantum memories, capable of storing photons until they are needed, are a potential solution to this `scaling catastrophe. Here, we analyze in detail the benefits of quantum memories for producing multiphoton states, showing how the production rates can be enhanced by many orders of magnitude. We identify the quantity $eta B$ as the most important figure of merit in this connection, where $eta$ and $B$ are the efficiency and time-bandwidth product of the memories, respectively.
We generate and study the entanglement properties of novel states composed of three polarisation-encoded photonic qubits. By varying a single experimental parameter we can coherently move from a fully separable state to a maximally robust W state, wh ile at all times preserving an optimally robust, symmetric entanglement configuration. We achieve a high fidelity with these configurations experimentally, including the highest reported W state fidelity.
Quantum information carriers with higher dimension than the canonical qubit offer significant advantages. However, manipulating such systems is extremely difficult. We show how measurement induced non-linearities can be employed to dramatically exten d the range of possible transforms on biphotonic qutrits; the three level quantum systems formed by the polarisation of two photons in the same spatio-temporal mode. We fully characterise the biphoton-photon entanglement that underpins our technique, thereby realising the first instance of qubit-qutrit entanglement. We discuss an extension of our technique to generate qutrit-qutrit entanglement and to manipulate any bosonic encoding of quantum information.
Shors powerful quantum algorithm for factoring represents a major challenge in quantum computation and its full realization will have a large impact on modern cryptography. Here we implement a compiled version of Shors algorithm in a photonic system using single photons and employing the non-linearity induced by measurement. For the first time we demonstrate the core processes, coherent control, and resultant entangled states that are required in a full-scale implementation of Shors algorithm. Demonstration of these processes is a necessary step on the path towards a full implementation of Shors algorithm and scalable quantum computing. Our results highlight that the performance of a quantum algorithm is not the same as performance of the underlying quantum circuit, and stress the importance of developing techniques for characterising quantum algorithms.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا