ترغب بنشر مسار تعليمي؟ اضغط هنا

Using the Usadel equation approach, we provide a compact formalism to calculate the critical current density of 21 different types of ferromagnetic (F) Josephson junctions containing insulating (I) and normal metal (N) layers in the weak link regions . In particular, we obtain that even a thin additional N layer may shift the 0-$pi$ transitions to larger or smaller values of the thickness $d_F$ of the ferromagnet, depending on its conducting properties. For certain values of $d_F$, a 0-$pi$ transition can even be achieved by changing only the N layer thickness. We use our model to fit experimental data of SIFS and SINFS tunnel junctions, where S is a superconducting electrode.
We calculate the current phase relation of a planar Josephson junction with a ferromagnetic weak link located on top of a thin normal metal film. Following experimental observations we assume transparent superconductor-ferromagnet interfaces. This pr ovides the best interlayer coupling and a low suppression of the superconducting correlations penetrating from the superconducting electrodes into the ferromagnetic layer. We show that this Josephson junction is a promising candidate for an experimental {phi} junction realization.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا