ترغب بنشر مسار تعليمي؟ اضغط هنا

We studied the quantum critical behavior of the second antiferromagnetic (AF) phase in the heavily electron-doped high-$T_c$ pnictide, LaFeAsO$_{1-x}$H$_x$ by using $^{75}$As and $^{1}$H nuclear-magnetic-resonance (NMR) technique. In the second AF ph ase, we observed a spatially modulated spin-density-wave-like state up to $x$=0.6 from the NMR spectral lineshape and detected a low-energy excitation gap from the nuclear relaxation time $T_1$ of $^{75}$As. The excitation gap closes at the AF quantum critical point (QCP) at $x approx 0.49$. The superconducting (SC) phase in a lower-doping regime contacts the second AF phase only at the AF QCP, and both phases are segregated from each other. The absence of AF critical fluctuations and the enhancement of the in-plane electric anisotropy are key factors for the development of superconductivity.
Nuclear magnetic resonance (NMR) measurements of an iron (Fe)-based superconductor LaFeAsO_{1-x}F_x (x = 0.08 and 0.14) were performed at ambient pressure and under pressure. The relaxation rate 1/T_1 for the overdoped samples (x = 0.14) shows T-line ar behavior just above T_c, and pressure application enhances 1/T_1T similar to the behavior of T_c. This implies that 1/T_1T = constant originates from the Korringa relation, and an increase in the density of states at the Fermi energy D(E_F) leads to the enhancement of T_c. In the underdoped samples (x = 0.08), 1/T_1T measured at ambient pressure also shows T-independent behavior in a wide temperature range above T_c. However, it shows Curie-Weiss-like T dependence at 3.0 GPa accompanied by a small increase in T_c, suggesting that predominant antiferromagnetic fluctuation suppresses development of superconductivity or remarkable enhancement of T_c. The qualitatively different features between underdoped and overdoped samples are systematically explained by a band calculation with hole and electron pockets.
Pressure-induced superconductivity was studied for a spin-ladder cuprate Sr$_2$Ca$_{12}$Cu$_{24}$O$_{41}$ using nuclear magnetic resonance (NMR) under pressures up to the optimal pressure 3.8 GPa. Pressure application leads to a transitional change f rom a spin-gapped state to a Fermi-liquid state at temperatures higher than $T_c$. The relaxation rate $1/T_1$ shows activated-type behavior at an onset pressure, whereas Korringa-like behavior becomes predominant at the optimal pressure, suggesting that an increase in the density of states (DOS) at the Fermi energy leads to enhancement of $T_c$. Nuclear quadrupole resonance (NQR) spectra suggest that pressure application causes transfer of holes from the chain to the ladder sites. The transfer of holes increases DOS below the optimal pressure. A dome-shaped $T_c$ versus pressure curve arises from naive balance between the transfer of holes and broadening of the band width.
75As-nuclear magnetic resonance (NMR) on an iron-based superconductor LaFeAsO1-xFx (x=0.14) was performed under a pressure of 3GPa. Enhancement of superconducting transition temperature Tc was confirmed from the relaxation rate 1/T1; Tc goes up to 40 K by applying pressure up to 3GPa. 1/T1T, which is temperature independent just above Tc and gives a measure of the density of states (DOS) at the Fermi energy, enhances by applying pressure. These facts suggest that the increase of the DOS leads to the enhancement of Tc. On the other hand, anomalous behavior of 1/T1T observed at high temperatures is suppressed by applying pressure.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا