ترغب بنشر مسار تعليمي؟ اضغط هنا

77 - N. Fabbri , C. Fort , M. Modugno 2015
In ultracold atoms settings, inelastic light scattering is a preeminent technique to reveal static and dynamic properties at nonzero momentum. In this work, we investigate an array of one-dimensional trapped Bose gases, by measuring both the energy a nd the momentum imparted to the system via light scattering experiments. The measurements are performed in the weak perturbation regime, where these two quantities - the energy and momentum transferred - are expected to be related to the dynamical structure factor of the system. We discuss this relation, with special attention to the role of in-trap dynamics on the transferred momentum.
75 - S. Rosi , A. Bernard , N. Fabbri 2013
We present experimental evidence of the successful closed-loop optimization of the dynamics of cold atoms in an optical lattice. We optimize the loading of an ultracold atomic gas minimizing the excitations in an array of one-dimensional tubes (3D-1D crossover) and we perform an optimal crossing of the quantum phase-transition from a Superfluid to a Mott-Insulator in a three-dimensional lattice. In both cases we enhance the experiment performances with respect to those obtained via adiabatic dynamics, effectively speeding up the process by more than a factor three while improving the quality of the desired transformation.
122 - M. Cramer , A. Bernard , N. Fabbri 2013
Entanglement is a fundamental resource for quantum information processing, occurring naturally in many-body systems at low temperatures. The presence of entanglement and, in particular, its scaling with the size of system partitions underlies the com plexity of quantum many-body states. The quantitative estimation of entanglement in many-body systems represents a major challenge as it requires either full state tomography, scaling exponentially in the system size, or the assumption of unverified system characteristics such as its Hamiltonian or temperature. Here we adopt recently developed approaches for the determination of rigorous lower entanglement bounds from readily accessible measurements and apply them in an experiment of ultracold interacting bosons in optical lattices of approximately $10^5$ sites. We then study the behaviour of spatial entanglement between the sites when crossing the superfluid-Mott insulator transition and when varying temperature. This constitutes the first rigorous experimental large-scale entanglement quantification in a scalable quantum simulator.
In this work, we use inelastic scattering of light to study the response of inhomogeneous Mott-insulator gases to external excitations. The experimental setup and procedure to probe the atomic Mott states are presented in detail. We discuss the link between the energy absorbed by the gases and accessible experimental parameters as well as the linearity of the response to the scattering of light. We investigate the excitations of the system in multiple energy bands and a band-mapping technique allows us to identify band and momentum of the excited atoms. In addition the momentum distribution in the Mott states which is spread over the entire first Brillouin zone enables us to reconstruct the dispersion relation in the high energy bands using a single Bragg excitation with a fixed momentum transfer.
We report on the experimental investigation of the response of a three-dimensional Bose-Einstein condensate (BEC) in the presence of a one-dimensional (1D) optical lattice. By means of Bragg spectroscopy we probe the band structure of the excitation spectrum in the presence of the periodic potential. We selectively induce elementary excitations of the BEC choosing the transferred momentum and we observe different resonances in the energy transfer, corresponding to the transitions to different bands. The frequency, the width and the strength of these resonances are investigated as a function of the amplitude of the 1D optical lattice.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا