ترغب بنشر مسار تعليمي؟ اضغط هنا

We report a study of the normal- and superconducting-state electronic properties of the centrosymmetric compound SrPt3P via 31P nuclear-magnetic-resonance (NMR) and magnetometry investigations. Essential features such as a sharp drop of the Knight sh ift at T < Tc and an exponential decrease of the NMR spin-lattice relaxation ratio 1/(T1T) below Tc are consistent with an s-wave electron pairing in SrPt3P, although a direct confirmation in the form of a Hebel-Slichter-type peak is lacking. Normal-state NMR data at T < 50 K indicate conventional features of the conduction electrons, typical of simple metals such as lithium or silver. Our data are finally compared with available NMR results for the noncentrosymmetric superconductors LaPt$_3$Si and CePt$_3$Si, which adopt similar crystal structures.
Hydrostatic pressure Raman measurements have been carried out on the SmFeAsO series of oxypnictides with varying amount of doping (F substitution for O and Co for Fe) and transition temperature (T_{c}), in order to investigate lattice modifications a nd their connection to doping and superconductivity. Synchrotron XRD data on some of these compounds indicated that at low doping the lattice constants vary smoothly with pressure, but with increasing F concentration there is a deviation from the normal equation of state and these effects are related with modifications in the superconducting FeAs4 tetrahedra. The hydrostatic pressure Raman measurements show that the A1g mode of the rare earth atom for the superconducting compounds deviates from the linear pressure dependence at the same pressures where the XRD results indicate pressure-induced lattice anomalies. A similar anomaly is found for the As phonon of same symmetry. As in cuprates, the effect is diminished in the undoped compounds and it is not related with the F substitution being present in the Sm(Fe_{1-x}Co_{x})AsO as well. The calculated Gruneisen parameter for the Sm phonon ({gamma approx}1.5) is very similar to the corresponding values of cuprates and it does not vary with doping. For the Fe mode it has higher value ({gamma approx}1.8) than for As ({gamma approx}1) indicating a more anharmonic phonon.
Single crystals of the LnFeAsO (Ln1111, Ln = Pr, Nd, and Sm) family with lateral dimensions up to 1 mm were grown from NaAs and KAs flux at high pressure. The crystals are of good structural quality and become superconducting when O is partially subs tituted by F (PrFeAsO1-xFx and NdFeAsO1-xFx) or when Fe is substituted by Co (SmFe1-xCoxAsO). From magnetization measurements, we estimate the temperature dependence and anisotropy of the upper critical field and the critical current density of underdoped PrFeAsO0.7F0.3 crystal with Tc = 25 K. Single crystals of SmFe1-xCoxAsO with maximal Tc up to 16.3 K for x = 0.08 were grown for the first time. From transport and magnetic measurements we estimate the critical fields and their anisotropy, and find these superconducting properties to be quite comparable to the ones in SmFeAsO1-xFx with a much higher Tc of = 50 K. The magnetically measured critical current densities are as high as 109 A/m2 at 2 K up to 7 T, with indication of the usual fishtail effect. The upper critical field estimated from resistivity measurements is anisotropic with slopes of -8.7 T/K (H // ab-plane) and -1.7 T/K (H // c-axis). This anisotropy (= 5) is similar to that in other Ln1111 crystals with various higher Tc s.
We report the successful imaging of flux vortices in single crystal MgB2 using transmission electron microscopy. The specimen was thinned to electron transparency (350 nm thickness) by focussed ion beam milling. An artefact of the thinning process wa s the production of longitudinal thickness undulations of height 1-2 nm in the sample which acted as pinning sites due to the energy required for the vortices to cross them. These had a profound effect on the patterns of vortex order observed which we examine here. Supplementary information can be downloaded from http://www-hrem.msm.cam.ac.uk/people/loudon/#publications
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا