ترغب بنشر مسار تعليمي؟ اضغط هنا

We introduce a Ramsey pulse scheme which extracts the non-Hermitian Hamiltonian associated to an arbitrary Lindblad dynamics. We propose a realted protocol to measure via interferometry a generalised Loschmidt echo of a generic state evolving in time with the non-Hermitian Hamiltonian itself, and we apply the scheme to a one-dimensional weakly interacting Bose gas coupled to a stochastic atomic impurity. The Loschmidt echo is mapped into a functional integral from which we calculate the long-time decohering dynamics at arbitrary impurity strengths. For strong dissipation we uncover the phenomenology of a quantum many-body Zeno effect: corrections to the decoherence exponent resulting from the impurity self-energy becomes purely imaginary, in contrast to the regime of small dissipation where they instead enhance the decay of quantum coherences. Our results illustrate the prospects for experiments employing Ramsey interferometry to study dissipative quantum impurities in condensed matter and cold atoms systems.
Recent experiments on twisted bilayer graphene (tBG) close to magic angle show that a small relative rotation in a van der Waals heterostructure greatly alters its electronic properties. We consider various scattering mechanisms and show that the car rier transport in tBG is dominated by a combination of charged impurities and acoustic gauge phonons. Charged impurities still dominate at low temperature and densities because of the inability of Dirac fermions to screen long-range Coulomb potentials at charge neutrality; however, the gauge phonons dominate for most of the experimental regime because although they couple to current, they do not induce charge and are therefore unscreened by the large density of states close to magic angle. We show that the resistivity has a strong monotonically decreasing carrier density dependence at low temperature due to charged impurity scattering, and weak density dependence at high temperature due to gauge phonons. Away from charge neutrality, the resistivity increases with temperature, while it does the opposite close to the Dirac point. A non-monotonic temperature dependence observed only at low temperature and carrier density is a signature of our theory that can be tested in experimentally available samples.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا