ترغب بنشر مسار تعليمي؟ اضغط هنا

We examine, in correlated mixed states of qudit-qubit systems, the set of all conditional qubit states that can be reached after local measurements at the qudit based on rank-1 projectors. While for a similar measurement at the qubit, the conditional post-measurement qudit states lie on the surface of an ellipsoid, for a measurement at the qudit we show that the set of post-measurement qubit states can form more complex solid regions. In particular, we show the emergence, for some classes of mixed states, of sets which are the convex hull of solid ellipsoids and which may lead to cone-like and triangle-like shapes in limit cases. We also analyze the associated measurement dependent conditional entropy, providing a full analytic determination of its minimum and of the minimizing local measurement at the qudit for the previous states. Separable rank-2 mixtures are also discussed.
We analyze the phase diagram of the exact ground state (GS) of spin-$s$ chains with ferromagnetic $XXZ$ couplings under $n$-alternating field configurations, i.e, sparse alternating fields having nodes at $n-1$ contiguous sites. It is shown that such systems can exhibit a non-trivial magnetic behavior, which can differ significantly from that of the standard ($n=1$) alternating case and enable mechanisms for controlling their magnetic and entanglement properties. The boundary in field space of the fully aligned phase can be determined analytically $forall,n$, and shows that it becomes reachable only above a threshold value of the coupling anisotropy $J_z/J$, which depends on $n$ but is independent of the system size. Below this value the maximum attainable magnetization becomes much smaller. We then show that the GS can exhibit significant magnetization plateaus, persistent for large systems, at which the magnetization per site $m$ obeys the quantization rule $2n(s-m)=integer$, consistent with the Oshikawa, Yamanaka and Affleck (OYA) criterion. We also identify the emergence of field induced spin polymerization, which explains the presence of such plateaus. Entanglement and field induced frustration effects are also analyzed.
90 - N. Canosa , M. Cerezo , N. Gigena 2017
We discuss a generalization of the conditional entropy and one-way information deficit in quantum systems, based on general entropic forms. The formalism allows to consider simple entropic forms for which a closed evaluation of the associated optimiz ation problem in qudit-qubit systems is shown to become feasible, allowing to approximate that of the quantum discord. As application, we examine quantum correlations of spin pairs in the exact ground state of finite $XY$ spin chains in a magnetic field through the quantum discord and information deficit. While these quantities show a similar behavior, their optimizing measurements exhibit significant differences, which can be understood and predicted through the previous approximations. The remarkable behavior of these quantities in the vicinity of transverse and non-transverse factorizing fields is also discussed.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا