ترغب بنشر مسار تعليمي؟ اضغط هنا

We demonstrate that the carrier concentration of epitaxial graphene devices grown on the C-face of a SiC substrate is efficiently modulated by a buried gate. The gate is fabricated via the implantation of nitrogen atoms in the SiC crystal, 200 nm bel ow the surface, and works well at intermediate temperatures: 40K-80K. The Dirac point is observed at moderate gate voltages (1-20V) depending upon the surface preparation. For temperatures below 40K, the gate is inefficient as the buried channel is frozen out. However, the carrier concentration in graphene remains very close to the value set at Tsim 40K. The absence of parallel conduction is evidenced by the observation of the half-integer quantum Hall effect at various concentrations at Tsim 4K. These observations pave the way to a better understanding of intrinsic properties of epitaxial graphene and are promising for applications such as quantum metrology.
We separate localization and interaction effects in epitaxial graphene devices grown on the C-face of a 4H-SiC substrate by analyzing the low temperature conductivities. Weak localization and antilocalization are extracted at low magnetic fields, aft er elimination of a geometric magnetoresistance and subtraction of the magnetic field dependent Drude conductivity. The electron electron interaction correction is extracted at higher magnetic fields, where localization effects disappear. Both phenomena are weak but sizable and of the same order of magnitude. If compared to graphene on silicon dioxide, electron electron interaction on epitaxial graphene are not significantly reduced by the larger dielectric constant of the SiC substrate.
Using high temperature annealing conditions with a graphite cap covering the C-face of an 8deg off-axis 4H-SiC sample, large and homogeneous single epitaxial graphene layers have been grown. Raman spectroscopy shows evidence of the almost free-standi ng character of these monolayer graphene sheets, which was confirmed by magneto-transport measurements. We find a moderate p-type doping, high carrier mobility and half integer Quantum Hall effect typical of high quality graphene samples. This opens the way to a fully compatible integration of graphene with SiC devices on the wafers that constitute the standard in todays SiC industry.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا