ترغب بنشر مسار تعليمي؟ اضغط هنا

(abridged) We present a dynamical analysis of the extended stellar stream encircling NGC 1097. Within a statistical framework, we model its surface brightness using mock streams as in Amorisco (2015) and deep imaging data from the CHART32 telescope ( Stellar Tidal Stream Survey). We reconstruct the post-infall evolution of the progenitor, which has experienced 3 pericentric passages and lost more than 2 orders of magnitude in mass. At infall, $5.4pm0.6$ Gyr ago, the progenitor was a disky dwarf with mass of $log_{10}[m(<3.4pm1 {rm kpc})/ M_odot]=10.35pm0.25$. We illustrate how the 90$^circ$ turn in the stream, identifying the `dog leg, is the signature of the progenitors prograde rotation. Today, the remnant is a nucleated dwarf, with a LOS velocity of $v_{rm p, los}^{rm obs}=-30pm 30$ kms$^{-1}$, and a luminosity of $3.3times 10^7 L_{V,odot}$ (Galianni et al. 2010). Our independent analysis predicts $v_{rm p, los}=-51^{-17}_{+14}$ kms$^{-1}$, and measures $log_{10}(m/ M_odot)=7.4^{+0.6}_{-0.8}$, so that the compact nucleus is soon becoming a low-luminosity UCD. We find that NGC 1097 has a mass of $M_{200}=1.8^{+0.5}_{-0.4} times 10^{12}; M_{odot}$, and its concentration $c_{200}=6.7^{+2.4}_{-1.3}$ is in agreement with LCDM. The stream is described almost down to the noise in a spherical host potential, we find this would not be possible if the halo was substantially triaxial at large radii. Its morphology shows that the slope of the total density profile bends from an inner $gamma(r_{rm peri})=1.5pm0.15$. The progenitors orbit reaches $r_{rm apo}=150pm 15$ kpc, more than a half of the virial radius of the host, so that, for the first time on an individual extragalactic halo, we measure the outer density slope, $gamma(0.6r_{200,c})=3.9pm0.5$. This demonstrates the promise of the newborn field of detailed, statistical modelling of extragalactic tidal streams.
125 - N. C. Amorisco , G. Bertin 2010
Disk-halo decompositions of galaxy rotation curves are generally performed in a parametric way. We construct self-consistent models of nonspherical isothermal halos embedding a zero-thickness disk, by assuming that the halo distribution function is a Maxwellian. The method developed here can be used to study other physically-based choices for the halo distribution function and the case of a disk accompanied by a bulge. In a preliminary investigation we note the existence of a fine tuning between the scalelengths R_{Omega} and h, respectively characterizing the rise of the rotation curve and the luminosity profile of the disk, which surprisingly applies to both high surface brightness and low surface brightness galaxies. This empirical correlation identifies a much stronger conspiracy than the one required by the smoothness and flatness of the rotation curve (disk-halo conspiracy). The self-consistent models are characterized by smooth and flat rotation curves for very different disk-to-halo mass ratios, hence suggesting that conspiracy is not as dramatic as often imagined. For a typical rotation curve, with asymptotically flat rotation curve at V_{infty} (the precise value of which can also be treated as a free parameter), and a typical density profile of the disk, self-consistent models are characterized by two dimensionless parameters, which correspond to the dimensional scales (the disk mass-to-light ratio M/L and the halo central density) of standard disk-halo decompositions. We show that if the rotation curve is decomposed by means of our self-consistent models, the disk-halo degeneracy is removed and typical rotation curves are fitted by models that are below the maximum-disk prescription. Similar results are obtained from a study of NGC 3198. Finally, we quantify the flattening of the spheroidal halo, which is significant, especially on the scale of the visible disk.
170 - G. Bertin , N. C. Amorisco 2009
Context: Several spiral galaxies, as beautifully exhibited by the case of NGC 6946, display a prominent large-scale spiral structure in their gaseous outer disk. Such structure is often thought to pose a dynamical puzzle, because grand-design spiral structure is traditionally interpreted as the result of density waves carried mostly in the stellar disk. Aims. Here we argue that the outer spiral arms in the cold gas outside the bright optical disk actually have a natural interpretation as the manifestation of the mechanism that excites grand-design spiral structure in the main, star-dominated body of the disk: the excitation is driven by angular momentum transport to the outer regions, through trailing density waves outside the corotation circle that can penetrate beyond the Outer Lindblad Resonance in the gaseous component of the disk. Methods: Because of conservation of the density wave action, these outgoing waves are likely to become more prominent in the outer disk and eventually reach non-linear amplitudes. To calculate the desired amplitude profiles, we make use of the theory of dispersive waves. Results: If the conditions beyond the optical radius allow for an approximate treatment in terms of a linear theory, we show that fitting the observed amplitude profiles leads to a quantitative test on the density of the disk material and thus on the dark matter distribution in the outer parts of the galaxy. Conclusions: This study is thus of interest to the general problem of the disk-halo decomposition of rotation curves.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا