ترغب بنشر مسار تعليمي؟ اضغط هنا

A new full three-body method is introduced to compute the rate of the triple-alpha capture reaction which is the primary source of $^{12}$C in stars. In this work, we combine the Faddeev hyperspherical harmonics and the R-matrix method to obtain a fu ll solution to the three-body $alpha+alpha+alpha$ continuum. Particular attention is paid to the long range effects caused by the pairwise Coulomb interactions. The new rate agrees with the NACRE rate for temperatures greater than 0.07 GK, but a large enhancement at lower temperature is found ($approx 10^{14}$ at 0.02 GK). Our results are compared to previous calculations where additional approximations were made. We show that the new rate does not significantly change the evolution of stars around one solar mass. In particular, such stars still undergo a red-giant phase consistent with observations, and no significant differences are found in the final white dwarfs.
With the increasing interest in using (d,p) transfer reactions to extract structure and astrophysical information, it is important to evaluate the accuracy of common approximations in reaction theory. Starting from the zero-range adiabatic wave model , which takes into account deuteron breakup in the transfer process, we evaluate the importance of the finite range of the n-p interaction in calculating the adiabatic deuteron wave (as in Johnson and Tandy) as well as in evaluating the transfer amplitude. Our study covers a wide variety of targets, as well as a large range of beam energies. Whereas at low beam energies finite-range effects are small (below 10%), we find these effects to become important at intermediate energies (20 MeV/u) calling for an exact treatment of finite range in the analysis of (d,p) reactions measured at fragmentation facilities.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا