ترغب بنشر مسار تعليمي؟ اضغط هنا

Possible topological nature of Kondo and mixed valence insulators has been a recent topic of interest in condensed matter physics. Attention has focused on SmB6, which has long been known to exhibit low temperature transport anomaly, whose origin is of independent interest. We argue that it is possible to resolve the topological nature of surface states by uniquely accessing the surface electronic structure of the low temperature anomalous transport regime through combining state-of-the-art laser- and synchrotron-based angle-resolved photoemission spectroscopy (ARPES) with or without spin resolution. A combination of low temperature and ultra-high resolution (laser) which is lacking in previous ARPES studies of this compound is the key to resolve the possible existence of topological surface state in SmB6. Here we outline an experimental algorithm to systematically explore the topological versus trivial or mixed (topological and trivial surface state admixture as in the first 3D TI Bi$_{1-x}$Sb$_x$) nature of the surface states in Kondo and mixed valence insulators. We conclude based on this methodology that the observed topology of the surface Fermi surface in our low temperature data considered within the level of current resolution is consistent with the theoretically predicted topological picture, suggesting a topological origin of the dominant in-gap ARPES signal in SmB6.}
The Kondo insulator SmB6 has long been known to exhibit low temperature (T < 10K) transport anomaly and has recently attracted attention as a new topological insulator candidate. By combining low-temperature and high energy-momentum resolution of the laser-based ARPES technique, for the first time, we probe the surface electronic structure of the anomalous conductivity regime. We observe that the bulk bands exhibit a Kondo gap of 14 meV and identify in-gap low-lying states within a 4 meV window of the Fermi level on the (001)-surface of this material. The low-lying states are found to form electron-like Fermi surface pockets that enclose the X and the Gamma points of the surface Brillouin zone. These states disappear as temperature is raised above 15K in correspondence with the complete disappearance of the 2D conductivity channels in SmB6. While the topological nature of the in-gap metallic states cannot be ascertained without spin (spin-texture) measurements our bulk and surface measurements carried out in the transport-anomaly-temperature regime (T < 10K) are consistent with the first-principle predicted Fermi surface behavior of a topological Kondo insulator phase in this material.
We perform systematic angle-resolved photoemission spectroscopic measurements on the lead tin telluride Pb1-xSnxTe pseudobinary alloy system. We show that the (001) crystalline surface, which is a crystalline surface symmetric about the (110) mirror planes of the Pb1-xSnxTe crystal, pos- sesses four metallic surface states within its surface Brillouin zone. Our systematic Fermi surface and band topology measurements show that the observed Dirac-like surface states lie on the symmetric momentum-space cuts. We further show that upon going to higher electron binding energies, the surface states isoenergetic countours in close vicinity of each X point are observed to hybridize with each other, leading to a Fermi surface fractionalization and the Lifshitz transition. In addition, systematic incident photon energy dependent measurements are performed, which enable us to un- ambiguously identify the surface states from the bulk bands. These systematic measurements of the surface and bulk electronic structure on Pb1-xSnxTe, supported by our first principles calculation results, for the first time, show that the Pb1-xSnxTe system belongs to the topological crystalline insulator phase due to the four band
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا