ترغب بنشر مسار تعليمي؟ اضغط هنا

We demonstrate theoretically and experimentally the phenomenon of vibrational resonance in a periodic potential, using cold atoms in an optical lattice as a model system. A high-frequency (HF) drive, with frequency much larger than any characteristic frequency of the system, is applied by phase-modulating one of the lattice beams. We show that the HF drive leads to the renormalization of the potential. We used transport measurements as a probe of the potential renormalization. The very same experiments also demonstrate that transport can be controlled by the HF drive via potential renormalization.
Motivated by recent work [D. Cubero et al., Phys. Rev. E 82, 041116 (2010)], we examine the mechanisms which determine current reversals in rocking ratchets as observed by varying the frequency of the drive. We found that a class of these current rev ersals in the frequency domain are precisely determined by dissipation-induced symmetry breaking. Our experimental and theoretical work thus extends and generalizes the previously identified relationship between dynamical and symmetry-breaking mechanisms in the generation of current reversals.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا