ترغب بنشر مسار تعليمي؟ اضغط هنا

A classical problem in city-scale cyber-physical systems (CPS) is resource allocation under uncertainty. Typically, such problems are modeled as Markov (or semi-Markov) decision processes. While online, offline, and decentralized approaches have been applied to such problems, they have difficulty scaling to large decision problems. We present a general approach to hierarchical planning that leverages structure in city-level CPS problems for resource allocation under uncertainty. We use the emergency response as a case study and show how a large resource allocation problem can be split into smaller problems. We then create a principled framework for solving the smaller problems and tackling the interaction between them. Finally, we use real-world data from Nashville, Tennessee, a major metropolitan area in the United States, to validate our approach. Our experiments show that the proposed approach outperforms state-of-the-art approaches used in the field of emergency response.
A collision avoidance system based on simple digital cameras would help enable the safe integration of small UAVs into crowded, low-altitude environments. In this work, we present an obstacle avoidance system for small UAVs that uses a monocular came ra with a hybrid neural network and path planner controller. The system is comprised of a vision network for estimating depth from camera images, a high-level control network, a collision prediction network, and a contingency policy. This system is evaluated on a simulated UAV navigating an obstacle course in a constrained flight pattern. Results show the proposed system achieves low collision rates while maintaining operationally relevant flight speeds.
Although deep reinforcement learning has advanced significantly over the past several years, sample efficiency remains a major challenge. Careful choice of input representations can help improve efficiency depending on the structure present in the pr oblem. In this work, we present an attention-based method to project inputs into an efficient representation space that is invariant under changes to input ordering. We show that our proposed representation results in a search space that is a factor of m! smaller for inputs of m objects. Our experiments demonstrate improvements in sample efficiency for policy gradient methods on a variety of tasks. We show that our representation allows us to solve problems that are otherwise intractable when using naive approaches.
Deep artificial neural networks (ANNs) can represent a wide range of complex functions. Implementing ANNs in Von Neumann computing systems, though, incurs a high energy cost due to the bottleneck created between CPU and memory. Implementation on neur omorphic systems may help to reduce energy demand. Conventional ANNs must be converted into equivalent Spiking Neural Networks (SNNs) in order to be deployed on neuromorphic chips. This paper presents a way to perform this translation. We map the ANN weights to SNN synapses layer-by-layer by forming a least-square-error approximation problem at each layer. An optimal set of synapse weights may then be found for a given choice of ANN activation function and SNN neuron. Using an appropriate constrained solver, we can generate SNNs compatible with digital, analog, or hybrid chip architectures. We present an optimal node pruning method to allow SNN layer sizes to be set by the designer. To illustrate this process, we convert three ANNs, including one convolutional network, to SNNs. In all three cases, a simple linear program solver was used. The experiments show that the resulting networks maintain agreement with the original ANN and excellent performance on the evaluation tasks. The networks were also reduced in size with little loss in task performance.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا