ترغب بنشر مسار تعليمي؟ اضغط هنا

166 - Muxin Han , Hongguang Liu 2021
The Lorentzian Engle-Pereira-Rovelli-Livine/Freidel-Krasnov (EPRL/FK) spinfoam model and the Conrady-Hnybida (CH) timelike-surface extension can be expressed in the integral form $int e^S$. This work studies the analytic continuation of the spinfoam action $S$ to the complexification of the integration domain. Our work extends our knowledge from the real critical points well-studied in the spinfoam large-$j$ asymptotics to general complex critical points of $S$ analytic continued to the complexified domain. The complex critical points satisfying critical equations of the analytic continued $S$. In the large-$j$ regime, the complex critical points give subdominant contributions to the spinfoam amplitude when the real critical points are present. But the contributions from the complex critical points can become dominant when the real critical point are absent. Moreover the contributions from the complex critical points cannot be neglected when the spins $j$ are not large. In this paper, we classify the complex critical points of the spinfoam amplitude, and find a subclass of complex critical points that can be interpreted as 4-dimensional simplicial geometries. In particular, we identify the complex critical points corresponding to the Riemannian simplicial geometries although we start with the Lorentzian spinfoam model. The contribution from these complex critical points of Riemannian geometry to the spinfoam amplitude give $e^{-S_{Regge}}$ in analogy with the Euclidean path integral, where $S_{Regge}$ is the Riemannian Regge action on simplicial complex.
Quantum information scrambling has attracted much attention amid the effort to reconcile the conflict between quantum-mechanical unitarity and the thermalizaiton-irreversibility in many-body systems. Here we propose an unconventional mechanism to gen erate quantum information scrambling through a high-complexity mapping from logical to physical degrees-of-freedom that hides the logical information into non-separable many-body-correlations. Corresponding to this mapping, we develop an algorithm to efficiently sample a Slater-determinant wavefunction and compute all physical observables in dynamics with a polynomial cost in system-size. The system shows information scrambling in the quantum many-body Hilbert space characterized by the spreading of Hamming-distance. At late time, we find emergence of classical diffusion dynamics in this quantum many-body system. We establish that the operator-mapping enabled growth in out-of-time-order-correlator exhibits exponential-scrambling behavior. The quantum information-hiding mapping approach may shed light on the understanding of fundamental connections among computational complexity, information scrambling and quantum thermalization.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا