ترغب بنشر مسار تعليمي؟ اضغط هنا

In a flat Bloch band the kinetic energy is quenched and single particles cannot propagate since they are localized due to destructive interference. Whether this remains true in the presence of interactions is a challenging question because a flat dis persion usually leads to highly correlated ground states. Here we compute numerically the ground state energy of lattice models with completely flat band structure in a ring geometry. We find that the energy as a function of the magnetic flux threading the ring has a half-flux quantum $Phi_0/2 = hc/(2e)$ period, indicating that only bound pairs of particles with charge $2e$ are propagating, while single quasiparticles with charge $e$ remain localized. We show analytically in one dimension that in fact the whole many-body spectrum has the same periodicity. Our analytical arguments are valid for both bosons and fermions, for generic interactions respecting some symmetries of the lattice and at arbitrary temperatures. Moreover we construct an extensive number of exact conserved quantities for the one dimensional lattice models. These conserved quantities are associated to the occupation of localized single quasiparticle states. Our results imply that in lattice models with flat bands preformed pairs dominate transport even above the critical temperature of the transition to a superfluid state.
In a partially filled flat Bloch band electrons do not have a well defined Fermi surface and hence the low-energy theory is not a Fermi liquid. Neverethless, under the influence of an attractive interaction, a superconductor well described by the Bar deen-Cooper-Schrieffer (BCS) wave function can arise. Here we study the low-energy effective Hamiltonian of a generic Hubbard model with a flat band. We obtain an effective Hamiltonian for the flat band physics by eliminating higher lying bands via perturbative Schrieffer-Wolff transformation. At first order in the interaction energy we recover the usual procedure of projecting the interaction term onto the flat band Wannier functions. We show that the BCS wave function is the exact ground state of the projected interaction Hamiltonian and that the compressibility is diverging as a consequence of an emergent $SU(2)$ symmetry. This symmetry is broken by second order interband transitions resulting in a finite compressibility, which we illustrate for a one-dimensional ladder with two perfectly flat bands. These results motivate a further approximation leading to an effective ferromagnetic Heisenberg model. The gauge-invariant result for the superfluid weight of a flat band can be obtained from the ferromagnetic Heisenberg model only if the maximally localized Wannier functions in the Marzari-Vanderbilt sense are used. Finally, we prove an important inequality $D geq mathcal{W}^2$ between the Drude weight $D$ and the winding number $mathcal{W}$, which guarantees ballistic transport for topologically nontrivial flat bands in one dimension.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا