ترغب بنشر مسار تعليمي؟ اضغط هنا

We study how standard auction objectives in sponsored search markets change with refinements in the prediction of the relevance (click-through rates) of ads. We study mechanisms that optimize for a convex combination of efficiency and revenue. We sho w that the objective function of such a mechanism can only improve with refined (improved) relevance predictions, i.e., the search engine has no disincentive to perform these refinements. More interestingly, we show that under assumptions, refinements to relevance predictions can only improve the efficiency of any such mechanism. Our main technical contribution is to study how relevance refinements affect the similarity between ranking by virtual-value (revenue ranking) and ranking by value (efficiency ranking). Finally, we discuss implications of our results to the literature on signaling.
A mechanism for releasing information about a statistical database with sensitive data must resolve a trade-off between utility and privacy. Privacy can be rigorously quantified using the framework of {em differential privacy}, which requires that a mechanisms output distribution is nearly the same whether or not a given database row is included or excluded. The goal of this paper is strong and general utility guarantees, subject to differential privacy. We pursue mechanisms that guarantee near-optimal utility to every potential user, independent of its side information (modeled as a prior distribution over query results) and preferences (modeled via a loss function). Our main result is: for each fixed count query and differential privacy level, there is a {em geometric mechanism} $M^*$ -- a discrete variant of the simple and well-studied Laplace mechanism -- that is {em simultaneously expected loss-minimizing} for every possible user, subject to the differential privacy constraint. This is an extremely strong utility guarantee: {em every} potential user $u$, no matter what its side information and preferences, derives as much utility from $M^*$ as from interacting with a differentially private mechanism $M_u$ that is optimally tailored to $u$.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا