ترغب بنشر مسار تعليمي؟ اضغط هنا

We report on the Stark deceleration of a pulsed molecular beam of NO radicals. Stark deceleration of this chemically important species has long been considered unfeasible due to its small electric dipole moment of 0.16 D. We prepared the NO radicals in the X 2{Pi}3/2, v=0, J=3/2 spin-orbit excited state from the X 2{Pi}1/2, v=0, J=1/2 ground state by Franck-Condon pumping via the A 2{Sigma}+ state. The larger effective dipole moment in the J=3/2 level of the X 2{Pi}3/2, v=0 state, in combination with a 316-stages-long Stark decelerator, allowed us to decelerate NO radicals from 315.0 m/s to 229.2 m/s, thus removing 47 % of their kinetic energy. The measured time-of-flight profiles of the NO radicals exiting the decelerator show good agreement with the outcome of numerical trajectory simulations.
Whereas atom-molecule collisions have been studied with complete quantum state resolution, interactions between two state-selected molecules have proven much harder to probe. Here, we report the measurement of state-resolved inelastic scattering cros s sections for collisions between two open-shell molecules that are both prepared in a single quantum state. Stark-decelerated OH radicals were scattered with hexapole-focused NO radicals in a crossed beam configuration. Rotationally and spin-orbit inelastic scattering cross sections were measured on an absolute scale for collision energies between 70 and 300 cm$^{-1}$. These cross sections show fair agreement with quantum coupled-channels calculations using a set of coupled model potential energy surfaces based on ab initio calculations for the long-range non-adiabatic interactions and a simplistic short-range interaction. This comparison reveals the crucial role of electrostatic forces in complex molecular collision processes.
We report on the observation of magnetic dipole allowed transitions in the well-characterized $A,^2Sigma^+ - X,^2Pi$ band system of the OH radical. A Stark decelerator in combination with microwave Rabi spectroscopy is used to control the populations in selected hyperfine levels of both $Lambda$-doublet components of the $X,^2Pi_{3/2},v=0,J=3/2$ ground state. Theoretical calculations presented in this paper predict that the magnetic dipole transitions in the $ u=1 leftarrow u=0$ band are weaker than the electric dipole transitions by a factor of $2.58times 10^3$ only, i.e., much less than commonly believed. Our experimental data confirm this prediction.
We present a combined experimental and theoretical study on the rotationally inelastic scattering of OH ($X,^2Pi_{3/2}, J=3/2, f$) radicals with the collision partners He, Ne, Ar, Kr, Xe, and D$_2$ as a function of the collision energy between $sim 7 0$ cm$^{-1}$ and 400~cm$^{-1}$. The OH radicals are state selected and velocity tuned prior to the collision using a Stark decelerator, and field-free parity-resolved state-to-state inelastic relative scattering cross sections are measured in a crossed molecular beam configuration. For all OH-rare gas atom systems excellent agreement is obtained with the cross sections predicted by close-coupling scattering calculations based on accurate emph{ab initio} potential energy surfaces. This series of experiments complements recent studies on the scattering of OH radicals with Xe [Gilijamse emph{et al.}, Science {bf 313}, 1617 (2006)], Ar [Scharfenberg emph{et al.}, Phys. Chem. Chem. Phys. {bf 12}, 10660 (2010)], He, and D$_2$ [Kirste emph{et al.}, Phys. Rev. A {bf 82}, 042717 (2010)]. A comparison of the relative scattering cross sections for this set of collision partners reveals interesting trends in the scattering behavior.
We present an experimental study on the rotational inelastic scattering of OH ($X^2Pi_{3/2}, J=3/2, f$) radicals with He and D$_2$ at collision energies between 100 and 500 cm$^{-1}$ in a crossed beam experiment. The OH radicals are state selected an d velocity tuned using a Stark decelerator. Relative parity-resolved state-to-state inelastic scattering cross sections are accurately determined. These experiments complement recent low-energy collision studies between trapped OH radicals and beams of He and D$_2$ that are sensitive to the total (elastic and inelastic) cross sections (Sawyer emph{et al.}, emph{Phys. Rev. Lett.} textbf{2008}, emph{101}, 203203), but for which the measured cross sections could not be reproduced by theoretical calculations (Pavlovic emph{et al.}, emph{J. Phys. Chem. A} textbf{2009}, emph{113}, 14670). For the OH-He system, our experiments validate the inelastic cross sections determined from rigorous quantum calculations.
Nonadiabatic transitions are known to be major loss channels for atoms in magnetic traps, but have thus far not been experimentally reported upon for trapped molecules. We have observed and quantified losses due to nonadiabatic transitions for three isotopologues of ammonia in electrostatic traps, by comparing the trapping times in traps with a zero and a non-zero electric field at the center. Nonadiabatic transitions are seen to dominate the overall loss rate even for samples at relatively high temperatures of 10-50 mK.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا