ترغب بنشر مسار تعليمي؟ اضغط هنا

We present photometric and spectroscopic observations of the interacting transient SN 2009ip taken during the 2013 and 2014 observing seasons. We characterise the photometric evolution as a steady and smooth decline in all bands, with a decline rate that is slower than expected for a solely $^{56}$Co-powered supernova at late phases. No further outbursts or eruptions were seen over a two year period from 2012 December until 2014 December. SN 2009ip remains brighter than its historic minimum from pre-discovery images. Spectroscopically, SN 2009ip continues to be dominated by strong, narrow ($lesssim$2000 km~s$^{-1}$) emission lines of H, He, Ca, and Fe. While we make tenuous detections of [Fe~{sc ii}] $lambda$7155 and [O~{sc i}] $lambdalambda$6300,6364 lines at the end of 2013 June and the start of 2013 October respectively, we see no strong broad nebular emission lines that could point to a core-collapse origin. In general, the lines appear relatively symmetric, with the exception of our final spectrum in 2014 May, when we observe the appearance of a redshifted shoulder of emission at +550 km~s$^{-1}$. The lines are not blue-shifted, and we see no significant near- or mid-infrared excess. From the spectroscopic and photometric evolution of SN 2009ip until 820 days after the start of the 2012a event, we still see no conclusive evidence for core-collapse, although whether any such signs could be masked by ongoing interaction is unclear.
We use natural seeing imaging of SN 2013ej in M74 to identify a progenitor candidate in archival {it Hubble Space Telescope} + ACS images. We find a source coincident with the SN in the {it F814W}-filter, however the position of the progenitor candid ate in contemporaneous {it F435W} and {it F555W}-filters is significantly offset. We conclude that the progenitor candidate is in fact two physically unrelated sources; a blue source which is likely unrelated to the SN, and a red source which we suggest exploded as SN 2013ej. Deep images with the same instrument onboard {it HST} taken when the supernova has faded (in approximately two years time) will allow us to accurately characterise the unrelated neighbouring source and hence determine the intrinsic flux of the progenitor in three filters. We suggest that the {it F814W} flux is dominated by the progenitor of SN 2013ej, and assuming a bolometric correction appropriate to an M-type supergiant, we estimate that the mass of the progenitor of SN 2013ej was between 8 -- 15.5 M$_{odot}$.
We present observations of the interacting transient SN 2009ip, from the start of the outburst in October 2012 until the end of the 2012 observing season. The transient reached a peak of $M_V$=-17.7 mag before fading rapidly, with a total integrated luminosity of 1.9$times10^{49}$ erg over the period of August-December 2012. The optical and near infrared spectra are dominated by narrow emission lines, signaling a dense circumstellar environment, together with multiple components of broad emission and absorption in H and He at velocities between 0.5-1.2$times10^4$ km s$^{-1}$. We see no evidence for nucleosynthesized material in SN 2009ip, even in late-time pseudo-nebular spectra. We set a limit of $<$0.02 M$_{odot}$ on the mass of any synthesized $^{56}$Ni from the late time lightcurve. A simple model for the narrow Balmer lines is presented, and used to derive number densities for the circumstellar medium of between $sim 10^{9}-10^{10}$ cm$^{-3}$. Our near-infrared data does not show any excess at longer wavelengths. Our last data, taken in December 2012, shows that SN 2009ip has spectroscopically evolved to something quite similar to its appearance in late 2009, albeit with higher velocities. It is possible that neither of the eruptive and high luminosity events of SN 2009ip were induced by a core-collapse. We show that the peak and total integrated luminosity can be due to the efficient conversion of kinetic energy from colliding ejecta, and that around 0.05-0.1 M$_{odot}$ of material moving at 0.5-1$times10^4$ km s$^{-1}$ could comfortably produce the observed luminosity. The ejection of multiple shells, lack of evidence for nucleosynthesied elements and broad nebular lines, are all consistent with the pulsational-pair instability scenario. In this case the progenitor star may still exist, and will be observed after the current outburst fades.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا