ترغب بنشر مسار تعليمي؟ اضغط هنا

We present extensive optical observations of the normal Type Ic supernova (SN) 2007gr, spanning from about one week before maximum light to more than one year thereafter. The optical light and color curves of SN 2007gr are very similar to those of th e broad-lined Type Ic SN 2002ap, but the spectra show remarkable differences. The optical spectra of SN 2007gr are characterized by unusually narrow lines, prominent carbon lines, and slow evolution of the line velocity after maximum light. The earliest spectrum (taken at t=-8 days) shows a possible signature of helium (He~I 5876 at a velocity of ~19,000 km s{-1}). Moreover, the larger intensity ratio of the [O I] 6300 and 6364 lines inferred from the early nebular spectra implies a lower opacity of the ejecta shortly after the explosion. These results indicate that SN 2007gr perhaps underwent a less energetic explosion of a smaller-mass Wolf-Rayet star (~ 8--9 Msun) in a binary system, as favored by an analysis of the progenitor environment through pre-explosion and post-explosion Hubble Space Telescope images. In the nebular spectra, asymmetric double-peaked profiles can be seen in the [O~I] 6300 and Mg~I] 4571 lines. We suggest that the two peaks are contributed by the blueshifted and rest-frame components. The similarity in velocity structure and the different evolution of the strength of the two components favor an aspherical explosion with the ejecta distributed in a torus or disk-like geometry, but inside the ejecta the O and Mg have different distributions.
In this work we analyse late-time (t > 100 d) optical spectra of low-redshift (z < 0.1) Type Ia supernovae (SNe Ia) which come mostly from the Berkeley Supernova Ia Program dataset. We also present spectra of SN 2011by for the first time. The BSNIP s ample studied consists of 34 SNe Ia with 60 nebular spectra, to which we add nebular spectral feature measurements of 20 SNe Ia from previously published work (Maeda et al. 2011; Blondin et al. 2012), representing the largest set of late-time SN Ia spectra ever analysed. The full width at half-maximum intensity (FWHM) and velocities of the [Fe III] {lambda}4701, [Fe II] {lambda}7155, and [Ni II] {lambda}7378 emission features are measured in most observations of spectroscopically normal objects where the data have signal-to-noise ratios >20 px^-1 and are older than 160 d past maximum brightness. The velocities of all three features are seen to be relatively constant with time, increasing only a few to ~20 km/s/d. The nebular velocity (v_neb, calculated by taking the average of the [Fe II] {lambda}7155 and [Ni II] {lambda}7378 velocities) is correlated with the near-maximum-brightness velocity gradient and early-time ejecta velocity. Nearly all high velocity gradient objects have redshifted nebular lines while most low velocity gradient objects have blueshifted nebular lines. No correlation is found between v_neb and {Delta}m_15(B), and for a given light-curve shape there is a large range of observed nebular velocities. The data also indicate a correlation between observed (B-V)_max and v_neb.
On 2012 May 17.2 UT, only 1.5 +/- 0.2 d after explosion, we discovered SN 2012cg, a Type Ia supernova (SN Ia) in NGC 4424 (d ~ 15 Mpc). As a result of the newly modified strategy employed by the Lick Observatory SN Search, a sequence of filtered imag es was obtained starting 161 s after discovery. Utilizing recent models describing the interaction of SN ejecta with a companion star, we rule out a ~1 M_Sun companion for half of all viewing angles and a red-giant companion for nearly all orientations. SN 2012cg reached a B-band maximum of 12.09 +/- 0.02 mag on 2012 June 2.0 and took ~17.3 d from explosion to reach this, typical for SNe Ia. Our pre-maximum brightness photometry shows a narrower-than-average B-band light curve for SN 2012cg, though slightly overluminous at maximum brightness and with normal color evolution (including some of the earliest SN Ia filtered photometry ever obtained). Spectral fits to SN 2012cg reveal ions typically found in SNe Ia at early times, with expansion velocities >14,000 km/s at 2.5 d past explosion. Absorption from C II is detected early, as well as high-velocity components of both Si II 6355 Ang. and Ca II. Our last spectrum (13.5 d past explosion) resembles that of the somewhat peculiar SN Ia 1999aa. This suggests that SN 2012cg will have a slower-than-average declining light curve, which may be surprising given the faster-than-average rising light curve.
In this third paper in a series we compare spectral feature measurements to photometric properties of 108 low-redshift (z < 0.1) Type Ia supernovae (SNe Ia) with optical spectra within 5 d of maximum brightness. We find the pseudo-equivalent width (p EW) of the Si II 4000 line to be a good indicator of light-curve width, and the pEWs of the Mg II and Fe II complexes are relatively good proxies for SN colour. We also employ a combination of light-curve parameters (specifically the SALT2 stretch and colour parameters x_1 and c, respectively) and spectral measurements to calculate distance moduli. The residuals from these models are then compared to the standard model which uses only light-curve stretch and colour. Our investigations show that a distance model that uses x_1, c, and the velocity of the Si II 6355 feature does not lead to a decrease in the Hubble residuals. We also find that distance models with flux ratios alone or in conjunction with light-curve information rarely perform better than the standard (x_1,c) model. However, when adopting a distance model which combines the ratio of fluxes near ~3750 Ang. and ~4550 Ang. with both x_1 and c, the Hubble residuals are decreased by ~10 per cent, which is found to be significant at about the 2-sigma level. The weighted root-mean-square of the residuals using this model is 0.130 +/- 0.017 mag (as compared with 0.144 +/- 0.019 mag when using the same sample with the standard model). This Hubble diagram fit has one of the smallest scatters ever published and at the highest significance ever seen in such a study. Finally, these results are discussed with regard to how they can improve the cosmological accuracy of future, large-scale SN Ia surveys. [Abridged]
In this paper, we present and analyse optical photometry and spectra of the extremely luminous and slowly evolving Type Ia supernova (SN Ia) 2009dc, and offer evidence that it is a super-Chandrasekhar mass (SC) SN Ia and thus had a SC white dwarf (WD ) progenitor. Optical spectra of SN 2007if, a similar object, are also shown. SN 2009dc had one of the most slowly evolving light curves ever observed for a SN Ia, with a rise time of ~23 days and Delta m_15(B) = 0.72 mag. We calculate a lower limit to the peak bolometric luminosity of ~2.4e43 erg/s, though the actual value is likely almost 40% larger. Optical spectra of SN 2009dc and SN 2007if obtained near maximum brightness exhibit strong C II features (indicative of a significant amount of unburned material), and the post-maximum spectra are dominated by iron-group elements. All of our spectra of SN 2009dc and SN 2007if also show low expansion velocities. However, we see no strong evidence in SN 2009dc for a velocity plateau near maximum light like the one seen in SN 2007if (Scalzo et al. 2010). The high luminosity and low expansion velocities of SN 2009dc lead us to derive a possible WD progenitor mass of more than 2 M_Sun and a Ni-56 mass of about 1.4-1.7 M_Sun. We propose that the host galaxy of SN 2009dc underwent a gravitational interaction with a neighboring galaxy in the relatively recent past. This may have led to a sudden burst of star formation which could have produced the SC WD progenitor of SN 2009dc and likely turned the neighboring galaxy into a post-starburst galaxy. No published model seems to match the extreme values observed in SN 2009dc, but simulations do show that such massive progenitors can exist (likely as a result of the merger of two WDs) and can possibly explode as SC SNe Ia.
We present visual-wavelength photometry and spectroscopy of supernova SN2008S. Based on the low peak luminosity for a SN of M_R = -13.9 mag, photometric and spectral evolution unlike that of low-luminosity SNe, a late-time decline rate slower than 56 Co decay, and slow outflow speeds of 600-1000 km/s, we conclude that SN2008S is not a true core-collapse SN and is probably not an electron-capture SN. Instead, we show that SN2008S more closely resembles a SN impostor event like SN1997bs, analogous to the giant eruptions of LBVs. Its total radiated energy was 1e47.8 ergs, and it may have ejected 0.05-0.2 Msun in the event. We discover an uncanny similarity between the spectrum of SN 2008S and that of the Galactic hypergiant IRC+10420, which is dominated by narrow H-alpha, [Ca II], and Ca II emission lines formed in an opaque wind. We propose a scenario where the vastly super-Eddington wind of SN2008S partly fails because of reduced opacity due to recombination, as suggested for IRC+10420. The range of initial masses susceptible to eruptive LBV-like mass loss was known to extend down to 20-25 Msun, but estimates for the progenitor of SN2008S (and the similar NGC300 transient) may extend this range to around 15 Msun. As such, SN2008S may have implications for the progenitor of SN1987A.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا