ترغب بنشر مسار تعليمي؟ اضغط هنا

The low-density parity-check (LDPC) lattices perform very well in high dimensions under generalized min-sum iterative decoding algorithm. In this work we focus on 1-level LDPC lattices. We show that these lattices are the same as lattices constructed based on Construction A and low-density lattice-code (LDLC) lattices. In spite of having slightly lower coding gain, 1-level regular LDPC lattices have remarkable performances. The lower complexity nature of the decoding algorithm for these type of lattices allows us to run it for higher dimensions easily. Our simulation results show that a 1-level LDPC lattice of size 10000 can work as close as 1.1 dB at normalized error probability (NEP) of $10^{-5}$.This can also be reported as 0.6 dB at symbol error rate (SER) of $10^{-5}$ with sum-product algorithm.
In this paper a new class of lattices called turbo lattices is introduced and established. We use the lattice Construction D to produce turbo lattices. This method needs a set of nested linear codes as its underlying structure. We benefit from turbo codes as our basis codes. Therefore, a set of nested turbo codes based on nested interleavers (block interleavers) and nested convolutional codes is built. To this end, we employ both tail-biting and zero-tail convolutional codes. Using these codes, along with construction D, turbo lattices are created. Several properties of Construction D lattices and fundamental characteristics of turbo lattices including the minimum distance, coding gain and kissing number are investigated. Furthermore, a multi-stage turbo lattice decoding algorithm based on iterative turbo decoding algorithm is given. We show, by simulation, that turbo lattices attain good error performance within $sim1.25 dB$ from capacity at block length of $n=1035$. Also an excellent performance of only $sim.5 dB$ away from capacity at SER of $10^{-5}$ is achieved for size $n=10131$.
In this work we establish some new interleavers based on permutation functions. The inverses of these interleavers are known over a finite field $mathbb{F}_q$. For the first time M{o}bius and Redei functions are used to give new deterministic interle avers. Furthermore we employ Skolem sequences in order to find new interleavers with known cycle structure. In the case of Redei functions an exact formula for the inverse function is derived. The cycle structure of Redei functions is also investigated. The self-inverse and non-self-inver
The concept and existence of sphere-bound-achieving and capacity-achieving lattices has been explained on AWGN channels by Forney. LDPC lattices, introduced by Sadeghi, perform very well under iterative decoding algorithm. In this work, we focus on a n ensemble of regular LDPC lattices. We produce and investigate an ensemble of LDPC lattices with known properties. It is shown that these lattices are sphere-bound-achieving and capacity-achieving. As byproducts we find the minimum distance, coding gain, kissing number and an upper bound for probability of error for this special ensemble of regular LDPC lattices.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا