ترغب بنشر مسار تعليمي؟ اضغط هنا

We generalize the higher-derivative F-terms introduced by Beasley and Witten (hep-th/0409149) for SU(2) superQCD to Sp(N) gauge theories with fundamental matter. We generate these terms by integrating out massive modes at tree level from an effective superpotential on the chiral ring of the microscopic theory. Though this superpotential is singular, its singularities are mild enough to permit the unambiguous identification of its minima, and gives sensible answers upon integrating out massive modes near any given minimum.
Using the generalized Konishi anomaly (GKA) equations, we derive the effective superpotential of four-dimensional N=1 supersymmetric SU(n) gauge theory with n+2 fundamental flavors. We find, however, that the GKA equations are only integrable in the Seiberg dual description of the theory, but not in the direct description of the theory. The failure of integrability in the direct, strongly coupled, description suggests the existence of non-perturbative corrections to the GKA equations.
We study N=1 supersymmetric SU(2) gauge theory in four dimensions with a large number of massless quarks. We argue that effective superpotentials as a function of local gauge-invariant chiral fields should exist for these theories. We show that altho ugh the superpotentials are singular, they nevertheless correctly describe the moduli space of vacua, are consistent under RG flow to fewer flavors upon turning on masses, and also reproduce by a tree-level calculation the higher-derivative F-terms calculated by Beasely and Witten (hep-th/0409149) using instanton methods. We note that this phenomenon can also occur in supersymmetric gauge theories in various dimensions.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا